1
0
Fork 0

Vendor main dependencies.

This commit is contained in:
Timo Reimann 2017-02-07 22:33:23 +01:00
parent 49a09ab7dd
commit dd5e3fba01
2738 changed files with 1045689 additions and 0 deletions

84
vendor/github.com/BurntSushi/ty/fun/chan.go generated vendored Normal file
View file

@ -0,0 +1,84 @@
package fun
import (
"reflect"
"github.com/BurntSushi/ty"
)
// AsyncChan has a parametric type:
//
// func AsyncChan(chan A) (send chan<- A, recv <-chan A)
//
// AsyncChan provides a channel abstraction without a fixed size buffer.
// The input should be a pointer to a channel that has a type without a
// direction, e.g., `new(chan int)`. Two new channels are returned: `send` and
// `recv`. The caller must send data on the `send` channel and receive data on
// the `recv` channel.
//
// Implementation is inspired by Kyle Lemons' work:
// https://github.com/kylelemons/iq/blob/master/iq_slice.go
func AsyncChan(baseChan interface{}) (send, recv interface{}) {
chk := ty.Check(
new(func(*chan ty.A) (chan ty.A, chan ty.A)),
baseChan)
// We don't care about the baseChan---it is only used to construct
// the return types.
tsend, trecv := chk.Returns[0], chk.Returns[1]
buf := make([]reflect.Value, 0, 10)
rsend := reflect.MakeChan(tsend, 0)
rrecv := reflect.MakeChan(trecv, 0)
go func() {
defer rrecv.Close()
BUFLOOP:
for {
if len(buf) == 0 {
rv, ok := rsend.Recv()
if !ok {
break BUFLOOP
}
buf = append(buf, rv)
}
cases := []reflect.SelectCase{
// case v, ok := <-send
{
Dir: reflect.SelectRecv,
Chan: rsend,
},
// case recv <- buf[0]
{
Dir: reflect.SelectSend,
Chan: rrecv,
Send: buf[0],
},
}
choice, rval, rok := reflect.Select(cases)
switch choice {
case 0:
// case v, ok := <-send
if !rok {
break BUFLOOP
}
buf = append(buf, rval)
case 1:
// case recv <- buf[0]
buf = buf[1:]
default:
panic("bug")
}
}
for _, rv := range buf {
rrecv.Send(rv)
}
}()
// Create the directional channel types.
tsDir := reflect.ChanOf(reflect.SendDir, tsend.Elem())
trDir := reflect.ChanOf(reflect.RecvDir, trecv.Elem())
return rsend.Convert(tsDir).Interface(), rrecv.Convert(trDir).Interface()
}

118
vendor/github.com/BurntSushi/ty/fun/doc.go generated vendored Normal file
View file

@ -0,0 +1,118 @@
/*
Package fun provides type parametric utility functions for lists, sets,
channels and maps.
The central contribution of this package is a set of functions that operate
on values without depending on their types while maintaining type safety at
run time using the `reflect` package.
There are two primary concerns when deciding whether to use this package
or not: the loss of compile time type safety and performance. In particular,
with regard to performance, most functions here are much slower than their
built-in counter parts. However, there are a couple where the overhead of
reflection is relatively insignificant: AsyncChan and ParMap.
In terms of code structure and organization, the price is mostly paid inside
of the package due to the annoyances of operating with `reflect`. The caller
usually only has one obligation other than to provide values consistent with
the type of the function: type assert the result to the desired type.
When the caller provides values that are inconsistent with the parametric type
of the function, the function will panic with a `TypeError`. (Either because
the types cannot be unified or because they cannot be constructed due to
limitations of the `reflect` package. See the `github.com/BurntSushi/ty`
package for more details.)
Requirements
Go tip (or 1.1 when it's released) is required. This package will not work
with Go 1.0.x or earlier.
The very foundation of this package only recently became possible with the
addition of 3 new functions in the standard library `reflect` package:
SliceOf, MapOf and ChanOf. In particular, it provides the ability to
dynamically construct types at run time from component types.
Further extensions to this package can be made if similar functions are added
for structs and functions(?).
Examples
Squaring each integer in a slice:
square := func(x int) int { return x * x }
nums := []int{1, 2, 3, 4, 5}
squares := Map(square, nums).([]int)
Reversing any slice:
slice := []string{"a", "b", "c"}
reversed := Reverse(slice).([]string)
Sorting any slice:
// Sort a slice of structs with first class functions.
type Album struct {
Title string
Year int
}
albums := []Album{
{"Born to Run", 1975},
{"WIESS", 1973},
{"Darkness", 1978},
{"Greetings", 1973},
}
less := func(a, b Album) bool { return a.Year < b.Year },
sorted := QuickSort(less, albums).([]Album)
Parallel map:
// Compute the prime factorization concurrently
// for every integer in [1000, 10000].
primeFactors := func(n int) []int { // compute prime factors }
factors := ParMap(primeFactors, Range(1000, 10001)).([]int)
Asynchronous channel without a fixed size buffer:
s, r := AsyncChan(new(chan int))
send, recv := s.(chan<- int), r.(<-chan int)
// Send as much as you want.
for i := 0; i < 100; i++ {
s <- i
}
close(s)
for i := range recv {
// do something with `i`
}
Shuffle any slice in place:
jumbleMe := []string{"The", "quick", "brown", "fox"}
Shuffle(jumbleMe)
Function memoization:
// Memoizing a recursive function like `fibonacci`.
// Write it like normal:
var fib func(n int64) int64
fib = func(n int64) int64 {
switch n {
case 0:
return 0
case 1:
return 1
}
return fib(n - 1) + fib(n - 2)
}
// And wrap it with `Memo`.
fib = Memo(fib).(func(int64) int64)
// Will keep your CPU busy for a long time
// without memoization.
fmt.Println(fib(80))
*/
package fun

35
vendor/github.com/BurntSushi/ty/fun/func.go generated vendored Normal file
View file

@ -0,0 +1,35 @@
package fun
import (
"reflect"
"github.com/BurntSushi/ty"
)
// Memo has a parametric type:
//
// func Memo(f func(A) B) func(A) B
//
// Memo memoizes any function of a single argument that returns a single value.
// The type `A` must be a Go type for which the comparison operators `==` and
// `!=` are fully defined (this rules out functions, maps and slices).
func Memo(f interface{}) interface{} {
chk := ty.Check(
new(func(func(ty.A) ty.B)),
f)
vf := chk.Args[0]
saved := make(map[interface{}]reflect.Value)
memo := func(in []reflect.Value) []reflect.Value {
val := in[0].Interface()
ret, ok := saved[val]
if ok {
return []reflect.Value{ret}
}
ret = call1(vf, in[0])
saved[val] = ret
return []reflect.Value{ret}
}
return reflect.MakeFunc(vf.Type(), memo).Interface()
}

303
vendor/github.com/BurntSushi/ty/fun/list.go generated vendored Normal file
View file

@ -0,0 +1,303 @@
package fun
import (
"reflect"
"runtime"
"sync"
"github.com/BurntSushi/ty"
)
// All has a parametric type:
//
// func All(p func(A) bool, xs []A) bool
//
// All returns `true` if and only if every element in `xs` satisfies `p`.
func All(f, xs interface{}) bool {
chk := ty.Check(
new(func(func(ty.A) bool, []ty.A) bool),
f, xs)
vf, vxs := chk.Args[0], chk.Args[1]
xsLen := vxs.Len()
for i := 0; i < xsLen; i++ {
if !call1(vf, vxs.Index(i)).Interface().(bool) {
return false
}
}
return true
}
// Exists has a parametric type:
//
// func Exists(p func(A) bool, xs []A) bool
//
// Exists returns `true` if and only if an element in `xs` satisfies `p`.
func Exists(f, xs interface{}) bool {
chk := ty.Check(
new(func(func(ty.A) bool, []ty.A) bool),
f, xs)
vf, vxs := chk.Args[0], chk.Args[1]
xsLen := vxs.Len()
for i := 0; i < xsLen; i++ {
if call1(vf, vxs.Index(i)).Interface().(bool) {
return true
}
}
return false
}
// In has a parametric type:
//
// func In(needle A, haystack []A) bool
//
// In returns `true` if and only if `v` can be found in `xs`. The equality test
// used is Go's standard `==` equality and NOT deep equality.
//
// Note that this requires that `A` be a type that can be meaningfully compared.
func In(needle, haystack interface{}) bool {
chk := ty.Check(
new(func(ty.A, []ty.A) bool),
needle, haystack)
vhaystack := chk.Args[1]
length := vhaystack.Len()
for i := 0; i < length; i++ {
if vhaystack.Index(i).Interface() == needle {
return true
}
}
return false
}
// Map has a parametric type:
//
// func Map(f func(A) B, xs []A) []B
//
// Map returns the list corresponding to the return value of applying
// `f` to each element in `xs`.
func Map(f, xs interface{}) interface{} {
chk := ty.Check(
new(func(func(ty.A) ty.B, []ty.A) []ty.B),
f, xs)
vf, vxs, tys := chk.Args[0], chk.Args[1], chk.Returns[0]
xsLen := vxs.Len()
vys := reflect.MakeSlice(tys, xsLen, xsLen)
for i := 0; i < xsLen; i++ {
vy := call1(vf, vxs.Index(i))
vys.Index(i).Set(vy)
}
return vys.Interface()
}
// Filter has a parametric type:
//
// func Filter(p func(A) bool, xs []A) []A
//
// Filter returns a new list only containing the elements of `xs` that satisfy
// the predicate `p`.
func Filter(p, xs interface{}) interface{} {
chk := ty.Check(
new(func(func(ty.A) bool, []ty.A) []ty.A),
p, xs)
vp, vxs, tys := chk.Args[0], chk.Args[1], chk.Returns[0]
xsLen := vxs.Len()
vys := reflect.MakeSlice(tys, 0, xsLen)
for i := 0; i < xsLen; i++ {
vx := vxs.Index(i)
if call1(vp, vx).Bool() {
vys = reflect.Append(vys, vx)
}
}
return vys.Interface()
}
// Foldl has a parametric type:
//
// func Foldl(f func(A, B) B, init B, xs []A) B
//
// Foldl reduces a list of A to a single element B using a left fold with
// an initial value `init`.
func Foldl(f, init, xs interface{}) interface{} {
chk := ty.Check(
new(func(func(ty.A, ty.B) ty.B, ty.B, []ty.A) ty.B),
f, init, xs)
vf, vinit, vxs, tb := chk.Args[0], chk.Args[1], chk.Args[2], chk.Returns[0]
xsLen := vxs.Len()
vb := zeroValue(tb)
vb.Set(vinit)
if xsLen == 0 {
return vb.Interface()
}
vb.Set(call1(vf, vxs.Index(0), vb))
for i := 1; i < xsLen; i++ {
vb.Set(call1(vf, vxs.Index(i), vb))
}
return vb.Interface()
}
// Foldr has a parametric type:
//
// func Foldr(f func(A, B) B, init B, xs []A) B
//
// Foldr reduces a list of A to a single element B using a right fold with
// an initial value `init`.
func Foldr(f, init, xs interface{}) interface{} {
chk := ty.Check(
new(func(func(ty.A, ty.B) ty.B, ty.B, []ty.A) ty.B),
f, init, xs)
vf, vinit, vxs, tb := chk.Args[0], chk.Args[1], chk.Args[2], chk.Returns[0]
xsLen := vxs.Len()
vb := zeroValue(tb)
vb.Set(vinit)
if xsLen == 0 {
return vb.Interface()
}
vb.Set(call1(vf, vxs.Index(xsLen-1), vb))
for i := xsLen - 2; i >= 0; i-- {
vb.Set(call1(vf, vxs.Index(i), vb))
}
return vb.Interface()
}
// Concat has a parametric type:
//
// func Concat(xs [][]A) []A
//
// Concat returns a new flattened list by appending all elements of `xs`.
func Concat(xs interface{}) interface{} {
chk := ty.Check(
new(func([][]ty.A) []ty.A),
xs)
vxs, tflat := chk.Args[0], chk.Returns[0]
xsLen := vxs.Len()
vflat := reflect.MakeSlice(tflat, 0, xsLen*3)
for i := 0; i < xsLen; i++ {
vflat = reflect.AppendSlice(vflat, vxs.Index(i))
}
return vflat.Interface()
}
// Reverse has a parametric type:
//
// func Reverse(xs []A) []A
//
// Reverse returns a new slice that is the reverse of `xs`.
func Reverse(xs interface{}) interface{} {
chk := ty.Check(
new(func([]ty.A) []ty.A),
xs)
vxs, tys := chk.Args[0], chk.Returns[0]
xsLen := vxs.Len()
vys := reflect.MakeSlice(tys, xsLen, xsLen)
for i := 0; i < xsLen; i++ {
vys.Index(i).Set(vxs.Index(xsLen - 1 - i))
}
return vys.Interface()
}
// Copy has a parametric type:
//
// func Copy(xs []A) []A
//
// Copy returns a copy of `xs` using Go's `copy` operation.
func Copy(xs interface{}) interface{} {
chk := ty.Check(
new(func([]ty.A) []ty.A),
xs)
vxs, tys := chk.Args[0], chk.Returns[0]
xsLen := vxs.Len()
vys := reflect.MakeSlice(tys, xsLen, xsLen)
reflect.Copy(vys, vxs)
return vys.Interface()
}
// ParMap has a parametric type:
//
// func ParMap(f func(A) B, xs []A) []B
//
// ParMap is just like Map, except it applies `f` to each element in `xs`
// concurrently using N worker goroutines (where N is the number of CPUs
// available reported by the Go runtime). If you want to control the number
// of goroutines spawned, use `ParMapN`.
//
// It is important that `f` not be a trivial operation, otherwise the overhead
// of executing it concurrently will result in worse performance than using
// a `Map`.
func ParMap(f, xs interface{}) interface{} {
n := runtime.NumCPU()
if n < 1 {
n = 1
}
return ParMapN(f, xs, n)
}
// ParMapN has a parametric type:
//
// func ParMapN(f func(A) B, xs []A, n int) []B
//
// ParMapN is just like Map, except it applies `f` to each element in `xs`
// concurrently using `n` worker goroutines.
//
// It is important that `f` not be a trivial operation, otherwise the overhead
// of executing it concurrently will result in worse performance than using
// a `Map`.
func ParMapN(f, xs interface{}, n int) interface{} {
chk := ty.Check(
new(func(func(ty.A) ty.B, []ty.A) []ty.B),
f, xs)
vf, vxs, tys := chk.Args[0], chk.Args[1], chk.Returns[0]
xsLen := vxs.Len()
ys := reflect.MakeSlice(tys, xsLen, xsLen)
if n < 1 {
n = 1
}
work := make(chan int, n)
wg := new(sync.WaitGroup)
for i := 0; i < n; i++ {
wg.Add(1)
go func() {
for j := range work {
// Good golly miss molly. Is `reflect.Value.Index`
// safe to access/set from multiple goroutines?
// XXX: If not, we'll need an extra wave of allocation to
// use real slices of `reflect.Value`.
ys.Index(j).Set(call1(vf, vxs.Index(j)))
}
wg.Done()
}()
}
for i := 0; i < xsLen; i++ {
work <- i
}
close(work)
wg.Wait()
return ys.Interface()
}
// Range generates a list of integers corresponding to every integer in
// the half-open interval [x, y).
//
// Range will panic if `end < start`.
func Range(start, end int) []int {
if end < start {
panic("range must have end greater than or equal to start")
}
r := make([]int, end-start)
for i := start; i < end; i++ {
r[i-start] = i
}
return r
}

46
vendor/github.com/BurntSushi/ty/fun/map.go generated vendored Normal file
View file

@ -0,0 +1,46 @@
package fun
import (
"reflect"
"github.com/BurntSushi/ty"
)
// Keys has a parametric type:
//
// func Keys(m map[A]B) []A
//
// Keys returns a list of the keys of `m` in an unspecified order.
func Keys(m interface{}) interface{} {
chk := ty.Check(
new(func(map[ty.A]ty.B) []ty.A),
m)
vm, tkeys := chk.Args[0], chk.Returns[0]
vkeys := reflect.MakeSlice(tkeys, vm.Len(), vm.Len())
for i, vkey := range vm.MapKeys() {
vkeys.Index(i).Set(vkey)
}
return vkeys.Interface()
}
// Values has a parametric type:
//
// func Values(m map[A]B) []B
//
// Values returns a list of the values of `m` in an unspecified order.
func Values(m interface{}) interface{} {
chk := ty.Check(
new(func(map[ty.A]ty.B) []ty.B),
m)
vm, tvals := chk.Args[0], chk.Returns[0]
vvals := reflect.MakeSlice(tvals, vm.Len(), vm.Len())
for i, vkey := range vm.MapKeys() {
vvals.Index(i).Set(vm.MapIndex(vkey))
}
return vvals.Interface()
}
// func MapMerge(m1, m2 interface{}) interface{} {
// }

94
vendor/github.com/BurntSushi/ty/fun/rand.go generated vendored Normal file
View file

@ -0,0 +1,94 @@
package fun
import (
"math/rand"
"reflect"
"time"
"github.com/BurntSushi/ty"
)
var randNumGen *rand.Rand
func init() {
randNumGen = rand.New(rand.NewSource(time.Now().UnixNano()))
}
// ShuffleGen has a parametric type:
//
// func ShuffleGen(xs []A, rng *rand.Rand)
//
// ShuffleGen shuffles `xs` in place using the given random number
// generator `rng`.
func ShuffleGen(xs interface{}, rng *rand.Rand) {
chk := ty.Check(
new(func([]ty.A, *rand.Rand)),
xs, rng)
vxs := chk.Args[0]
// Implements the Fisher-Yates shuffle: http://goo.gl/Hb9vg
xsLen := vxs.Len()
swapper := swapperOf(vxs.Type().Elem())
for i := xsLen - 1; i >= 1; i-- {
j := rng.Intn(i + 1)
swapper.swap(vxs.Index(i), vxs.Index(j))
}
}
// Shuffle has a parametric type:
//
// func Shuffle(xs []A)
//
// Shuffle shuffles `xs` in place using a default random number
// generator seeded once at program initialization.
func Shuffle(xs interface{}) {
ShuffleGen(xs, randNumGen)
}
// Sample has a parametric type:
//
// func Sample(population []A, n int) []A
//
// Sample returns a random sample of size `n` from a list
// `population` using a default random number generator seeded once at
// program initialization.
// All elements in `population` have an equal chance of being selected.
// If `n` is greater than the size of `population`, then `n` is set to
// the size of the population.
func Sample(population interface{}, n int) interface{} {
return SampleGen(population, n, randNumGen)
}
// SampleGen has a parametric type:
//
// func SampleGen(population []A, n int, rng *rand.Rand) []A
//
// SampleGen returns a random sample of size `n` from a list
// `population` using a given random number generator `rng`.
// All elements in `population` have an equal chance of being selected.
// If `n` is greater than the size of `population`, then `n` is set to
// the size of the population.
func SampleGen(population interface{}, n int, rng *rand.Rand) interface{} {
chk := ty.Check(
new(func([]ty.A, int, *rand.Rand) []ty.A),
population, n, rng)
rpop, tsamp := chk.Args[0], chk.Returns[0]
popLen := rpop.Len()
if n == 0 {
return reflect.MakeSlice(tsamp, 0, 0).Interface()
}
if n > popLen {
n = popLen
}
// TODO(burntsushi): Implement an algorithm that doesn't depend on
// the size of the population.
rsamp := reflect.MakeSlice(tsamp, n, n)
choices := rng.Perm(popLen)
for i := 0; i < n; i++ {
rsamp.Index(i).Set(rpop.Index(choices[i]))
}
return rsamp.Interface()
}

99
vendor/github.com/BurntSushi/ty/fun/set.go generated vendored Normal file
View file

@ -0,0 +1,99 @@
package fun
import (
"reflect"
"github.com/BurntSushi/ty"
)
// Set has a parametric type:
//
// func Set(xs []A) map[A]bool
//
// Set creates a set from a list.
func Set(xs interface{}) interface{} {
chk := ty.Check(
new(func([]ty.A) map[ty.A]bool),
xs)
vxs, tset := chk.Args[0], chk.Returns[0]
vtrue := reflect.ValueOf(true)
vset := reflect.MakeMap(tset)
xsLen := vxs.Len()
for i := 0; i < xsLen; i++ {
vset.SetMapIndex(vxs.Index(i), vtrue)
}
return vset.Interface()
}
// Union has a parametric type:
//
// func Union(a map[A]bool, b map[A]bool) map[A]bool
//
// Union returns the union of two sets, where a set is represented as a
// `map[A]bool`. The sets `a` and `b` are not modified.
func Union(a, b interface{}) interface{} {
chk := ty.Check(
new(func(map[ty.A]bool, map[ty.A]bool) map[ty.A]bool),
a, b)
va, vb, tc := chk.Args[0], chk.Args[1], chk.Returns[0]
vtrue := reflect.ValueOf(true)
vc := reflect.MakeMap(tc)
for _, vkey := range va.MapKeys() {
vc.SetMapIndex(vkey, vtrue)
}
for _, vkey := range vb.MapKeys() {
vc.SetMapIndex(vkey, vtrue)
}
return vc.Interface()
}
// Intersection has a parametric type:
//
// func Intersection(a map[A]bool, b map[A]bool) map[A]bool
//
// Intersection returns the intersection of two sets, where a set is
// represented as a `map[A]bool`. The sets `a` and `b` are not modified.
func Intersection(a, b interface{}) interface{} {
chk := ty.Check(
new(func(map[ty.A]bool, map[ty.A]bool) map[ty.A]bool),
a, b)
va, vb, tc := chk.Args[0], chk.Args[1], chk.Returns[0]
vtrue := reflect.ValueOf(true)
vc := reflect.MakeMap(tc)
for _, vkey := range va.MapKeys() {
if vb.MapIndex(vkey).IsValid() {
vc.SetMapIndex(vkey, vtrue)
}
}
for _, vkey := range vb.MapKeys() {
if va.MapIndex(vkey).IsValid() {
vc.SetMapIndex(vkey, vtrue)
}
}
return vc.Interface()
}
// Difference has a parametric type:
//
// func Difference(a map[A]bool, b map[A]bool) map[A]bool
//
// Difference returns a set with all elements in `a` that are not in `b`.
// The sets `a` and `b` are not modified.
func Difference(a, b interface{}) interface{} {
chk := ty.Check(
new(func(map[ty.A]bool, map[ty.A]bool) map[ty.A]bool),
a, b)
va, vb, tc := chk.Args[0], chk.Args[1], chk.Returns[0]
vtrue := reflect.ValueOf(true)
vc := reflect.MakeMap(tc)
for _, vkey := range va.MapKeys() {
if !vb.MapIndex(vkey).IsValid() {
vc.SetMapIndex(vkey, vtrue)
}
}
return vc.Interface()
}

98
vendor/github.com/BurntSushi/ty/fun/sort.go generated vendored Normal file
View file

@ -0,0 +1,98 @@
package fun
import (
"reflect"
"sort"
"github.com/BurntSushi/ty"
)
// QuickSort has a parametric type:
//
// func QuickSort(less func(x1 A, x2 A) bool, []A) []A
//
// QuickSort applies the "quicksort" algorithm to return a new sorted list
// of `xs`, where `xs` is not modified.
//
// `less` should be a function that returns true if and only if `x1` is less
// than `x2`.
func QuickSort(less, xs interface{}) interface{} {
chk := ty.Check(
new(func(func(ty.A, ty.A) bool, []ty.A) []ty.A),
less, xs)
vless, vxs, tys := chk.Args[0], chk.Args[1], chk.Returns[0]
var qsort func(left, right int)
var partition func(left, right, pivot int) int
xsind := Range(0, vxs.Len())
qsort = func(left, right int) {
if left >= right {
return
}
pivot := (left + right) / 2
pivot = partition(left, right, pivot)
qsort(left, pivot-1)
qsort(pivot+1, right)
}
partition = func(left, right, pivot int) int {
vpivot := xsind[pivot]
xsind[pivot], xsind[right] = xsind[right], xsind[pivot]
ind := left
for i := left; i < right; i++ {
if call1(vless, vxs.Index(xsind[i]), vxs.Index(vpivot)).Bool() {
xsind[i], xsind[ind] = xsind[ind], xsind[i]
ind++
}
}
xsind[ind], xsind[right] = xsind[right], xsind[ind]
return ind
}
// Sort `xsind` in place.
qsort(0, len(xsind)-1)
vys := reflect.MakeSlice(tys, len(xsind), len(xsind))
for i, xsIndex := range xsind {
vys.Index(i).Set(vxs.Index(xsIndex))
}
return vys.Interface()
}
// Sort has a parametric type:
//
// func Sort(less func(x1 A, x2 A) bool, []A)
//
// Sort uses the standard library `sort` package to sort `xs` in place.
//
// `less` should be a function that returns true if and only if `x1` is less
// than `x2`.
func Sort(less, xs interface{}) {
chk := ty.Check(
new(func(func(ty.A, ty.A) bool, []ty.A)),
less, xs)
vless, vxs := chk.Args[0], chk.Args[1]
sort.Sort(&sortable{vless, vxs, swapperOf(vxs.Type().Elem())})
}
type sortable struct {
less reflect.Value
xs reflect.Value
swapper swapper
}
func (s *sortable) Less(i, j int) bool {
ith, jth := s.xs.Index(i), s.xs.Index(j)
return call1(s.less, ith, jth).Bool()
}
func (s *sortable) Swap(i, j int) {
s.swapper.swap(s.xs.Index(i), s.xs.Index(j))
}
func (s *sortable) Len() int {
return s.xs.Len()
}

37
vendor/github.com/BurntSushi/ty/fun/util.go generated vendored Normal file
View file

@ -0,0 +1,37 @@
package fun
import (
"reflect"
)
func zeroValue(typ reflect.Type) reflect.Value {
return reflect.New(typ).Elem()
}
type swapper reflect.Value
func swapperOf(typ reflect.Type) swapper {
return swapper(zeroValue(typ))
}
func (s swapper) swap(a, b reflect.Value) {
vs := reflect.Value(s)
vs.Set(a)
a.Set(b)
b.Set(vs)
}
func call(f reflect.Value, args ...reflect.Value) {
f.Call(args)
}
func call1(f reflect.Value, args ...reflect.Value) reflect.Value {
return f.Call(args)[0]
}
func call2(f reflect.Value, args ...reflect.Value) (
reflect.Value, reflect.Value) {
ret := f.Call(args)
return ret[0], ret[1]
}