chore: update docker and k8s
This commit is contained in:
parent
2b5c7f9e91
commit
c2d440a914
1283 changed files with 67741 additions and 27918 deletions
72
vendor/k8s.io/client-go/util/buffer/ring_growing.go
generated
vendored
72
vendor/k8s.io/client-go/util/buffer/ring_growing.go
generated
vendored
|
@ -1,72 +0,0 @@
|
|||
/*
|
||||
Copyright 2017 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package buffer
|
||||
|
||||
// RingGrowing is a growing ring buffer.
|
||||
// Not thread safe.
|
||||
type RingGrowing struct {
|
||||
data []interface{}
|
||||
n int // Size of Data
|
||||
beg int // First available element
|
||||
readable int // Number of data items available
|
||||
}
|
||||
|
||||
// NewRingGrowing constructs a new RingGrowing instance with provided parameters.
|
||||
func NewRingGrowing(initialSize int) *RingGrowing {
|
||||
return &RingGrowing{
|
||||
data: make([]interface{}, initialSize),
|
||||
n: initialSize,
|
||||
}
|
||||
}
|
||||
|
||||
// ReadOne reads (consumes) first item from the buffer if it is available, otherwise returns false.
|
||||
func (r *RingGrowing) ReadOne() (data interface{}, ok bool) {
|
||||
if r.readable == 0 {
|
||||
return nil, false
|
||||
}
|
||||
r.readable--
|
||||
element := r.data[r.beg]
|
||||
r.data[r.beg] = nil // Remove reference to the object to help GC
|
||||
if r.beg == r.n-1 {
|
||||
// Was the last element
|
||||
r.beg = 0
|
||||
} else {
|
||||
r.beg++
|
||||
}
|
||||
return element, true
|
||||
}
|
||||
|
||||
// WriteOne adds an item to the end of the buffer, growing it if it is full.
|
||||
func (r *RingGrowing) WriteOne(data interface{}) {
|
||||
if r.readable == r.n {
|
||||
// Time to grow
|
||||
newN := r.n * 2
|
||||
newData := make([]interface{}, newN)
|
||||
to := r.beg + r.readable
|
||||
if to <= r.n {
|
||||
copy(newData, r.data[r.beg:to])
|
||||
} else {
|
||||
copied := copy(newData, r.data[r.beg:])
|
||||
copy(newData[copied:], r.data[:(to%r.n)])
|
||||
}
|
||||
r.beg = 0
|
||||
r.data = newData
|
||||
r.n = newN
|
||||
}
|
||||
r.data[(r.readable+r.beg)%r.n] = data
|
||||
r.readable++
|
||||
}
|
159
vendor/k8s.io/client-go/util/cert/cert.go
generated
vendored
159
vendor/k8s.io/client-go/util/cert/cert.go
generated
vendored
|
@ -18,25 +18,24 @@ package cert
|
|||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
"crypto"
|
||||
cryptorand "crypto/rand"
|
||||
"crypto/rsa"
|
||||
"crypto/x509"
|
||||
"crypto/x509/pkix"
|
||||
"encoding/pem"
|
||||
"errors"
|
||||
"fmt"
|
||||
"math"
|
||||
"io/ioutil"
|
||||
"math/big"
|
||||
"net"
|
||||
"path"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"k8s.io/client-go/util/keyutil"
|
||||
)
|
||||
|
||||
const (
|
||||
rsaKeySize = 2048
|
||||
duration365d = time.Hour * 24 * 365
|
||||
)
|
||||
const duration365d = time.Hour * 24 * 365
|
||||
|
||||
// Config contains the basic fields required for creating a certificate
|
||||
type Config struct {
|
||||
|
@ -54,13 +53,8 @@ type AltNames struct {
|
|||
IPs []net.IP
|
||||
}
|
||||
|
||||
// NewPrivateKey creates an RSA private key
|
||||
func NewPrivateKey() (*rsa.PrivateKey, error) {
|
||||
return rsa.GenerateKey(cryptorand.Reader, rsaKeySize)
|
||||
}
|
||||
|
||||
// NewSelfSignedCACert creates a CA certificate
|
||||
func NewSelfSignedCACert(cfg Config, key *rsa.PrivateKey) (*x509.Certificate, error) {
|
||||
func NewSelfSignedCACert(cfg Config, key crypto.Signer) (*x509.Certificate, error) {
|
||||
now := time.Now()
|
||||
tmpl := x509.Certificate{
|
||||
SerialNumber: new(big.Int).SetInt64(0),
|
||||
|
@ -72,7 +66,7 @@ func NewSelfSignedCACert(cfg Config, key *rsa.PrivateKey) (*x509.Certificate, er
|
|||
NotAfter: now.Add(duration365d * 10).UTC(),
|
||||
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature | x509.KeyUsageCertSign,
|
||||
BasicConstraintsValid: true,
|
||||
IsCA: true,
|
||||
IsCA: true,
|
||||
}
|
||||
|
||||
certDERBytes, err := x509.CreateCertificate(cryptorand.Reader, &tmpl, &tmpl, key.Public(), key)
|
||||
|
@ -82,62 +76,40 @@ func NewSelfSignedCACert(cfg Config, key *rsa.PrivateKey) (*x509.Certificate, er
|
|||
return x509.ParseCertificate(certDERBytes)
|
||||
}
|
||||
|
||||
// NewSignedCert creates a signed certificate using the given CA certificate and key
|
||||
func NewSignedCert(cfg Config, key *rsa.PrivateKey, caCert *x509.Certificate, caKey *rsa.PrivateKey) (*x509.Certificate, error) {
|
||||
serial, err := cryptorand.Int(cryptorand.Reader, new(big.Int).SetInt64(math.MaxInt64))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if len(cfg.CommonName) == 0 {
|
||||
return nil, errors.New("must specify a CommonName")
|
||||
}
|
||||
if len(cfg.Usages) == 0 {
|
||||
return nil, errors.New("must specify at least one ExtKeyUsage")
|
||||
}
|
||||
|
||||
certTmpl := x509.Certificate{
|
||||
Subject: pkix.Name{
|
||||
CommonName: cfg.CommonName,
|
||||
Organization: cfg.Organization,
|
||||
},
|
||||
DNSNames: cfg.AltNames.DNSNames,
|
||||
IPAddresses: cfg.AltNames.IPs,
|
||||
SerialNumber: serial,
|
||||
NotBefore: caCert.NotBefore,
|
||||
NotAfter: time.Now().Add(duration365d).UTC(),
|
||||
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
|
||||
ExtKeyUsage: cfg.Usages,
|
||||
}
|
||||
certDERBytes, err := x509.CreateCertificate(cryptorand.Reader, &certTmpl, caCert, key.Public(), caKey)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return x509.ParseCertificate(certDERBytes)
|
||||
}
|
||||
|
||||
// MakeEllipticPrivateKeyPEM creates an ECDSA private key
|
||||
func MakeEllipticPrivateKeyPEM() ([]byte, error) {
|
||||
privateKey, err := ecdsa.GenerateKey(elliptic.P256(), cryptorand.Reader)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
derBytes, err := x509.MarshalECPrivateKey(privateKey)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
privateKeyPemBlock := &pem.Block{
|
||||
Type: ECPrivateKeyBlockType,
|
||||
Bytes: derBytes,
|
||||
}
|
||||
return pem.EncodeToMemory(privateKeyPemBlock), nil
|
||||
}
|
||||
|
||||
// GenerateSelfSignedCertKey creates a self-signed certificate and key for the given host.
|
||||
// Host may be an IP or a DNS name
|
||||
// You may also specify additional subject alt names (either ip or dns names) for the certificate
|
||||
// You may also specify additional subject alt names (either ip or dns names) for the certificate.
|
||||
func GenerateSelfSignedCertKey(host string, alternateIPs []net.IP, alternateDNS []string) ([]byte, []byte, error) {
|
||||
return GenerateSelfSignedCertKeyWithFixtures(host, alternateIPs, alternateDNS, "")
|
||||
}
|
||||
|
||||
// GenerateSelfSignedCertKeyWithFixtures creates a self-signed certificate and key for the given host.
|
||||
// Host may be an IP or a DNS name. You may also specify additional subject alt names (either ip or dns names)
|
||||
// for the certificate.
|
||||
//
|
||||
// If fixtureDirectory is non-empty, it is a directory path which can contain pre-generated certs. The format is:
|
||||
// <host>_<ip>-<ip>_<alternateDNS>-<alternateDNS>.crt
|
||||
// <host>_<ip>-<ip>_<alternateDNS>-<alternateDNS>.key
|
||||
// Certs/keys not existing in that directory are created.
|
||||
func GenerateSelfSignedCertKeyWithFixtures(host string, alternateIPs []net.IP, alternateDNS []string, fixtureDirectory string) ([]byte, []byte, error) {
|
||||
validFrom := time.Now().Add(-time.Hour) // valid an hour earlier to avoid flakes due to clock skew
|
||||
maxAge := time.Hour * 24 * 365 // one year self-signed certs
|
||||
|
||||
baseName := fmt.Sprintf("%s_%s_%s", host, strings.Join(ipsToStrings(alternateIPs), "-"), strings.Join(alternateDNS, "-"))
|
||||
certFixturePath := path.Join(fixtureDirectory, baseName+".crt")
|
||||
keyFixturePath := path.Join(fixtureDirectory, baseName+".key")
|
||||
if len(fixtureDirectory) > 0 {
|
||||
cert, err := ioutil.ReadFile(certFixturePath)
|
||||
if err == nil {
|
||||
key, err := ioutil.ReadFile(keyFixturePath)
|
||||
if err == nil {
|
||||
return cert, key, nil
|
||||
}
|
||||
return nil, nil, fmt.Errorf("cert %s can be read, but key %s cannot: %v", certFixturePath, keyFixturePath, err)
|
||||
}
|
||||
maxAge = 100 * time.Hour * 24 * 365 // 100 years fixtures
|
||||
}
|
||||
|
||||
caKey, err := rsa.GenerateKey(cryptorand.Reader, 2048)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
|
@ -148,12 +120,12 @@ func GenerateSelfSignedCertKey(host string, alternateIPs []net.IP, alternateDNS
|
|||
Subject: pkix.Name{
|
||||
CommonName: fmt.Sprintf("%s-ca@%d", host, time.Now().Unix()),
|
||||
},
|
||||
NotBefore: time.Now(),
|
||||
NotAfter: time.Now().Add(time.Hour * 24 * 365),
|
||||
NotBefore: validFrom,
|
||||
NotAfter: validFrom.Add(maxAge),
|
||||
|
||||
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature | x509.KeyUsageCertSign,
|
||||
BasicConstraintsValid: true,
|
||||
IsCA: true,
|
||||
IsCA: true,
|
||||
}
|
||||
|
||||
caDERBytes, err := x509.CreateCertificate(cryptorand.Reader, &caTemplate, &caTemplate, &caKey.PublicKey, caKey)
|
||||
|
@ -176,8 +148,8 @@ func GenerateSelfSignedCertKey(host string, alternateIPs []net.IP, alternateDNS
|
|||
Subject: pkix.Name{
|
||||
CommonName: fmt.Sprintf("%s@%d", host, time.Now().Unix()),
|
||||
},
|
||||
NotBefore: time.Now(),
|
||||
NotAfter: time.Now().Add(time.Hour * 24 * 365),
|
||||
NotBefore: validFrom,
|
||||
NotAfter: validFrom.Add(maxAge),
|
||||
|
||||
KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature,
|
||||
ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth},
|
||||
|
@ -209,37 +181,26 @@ func GenerateSelfSignedCertKey(host string, alternateIPs []net.IP, alternateDNS
|
|||
|
||||
// Generate key
|
||||
keyBuffer := bytes.Buffer{}
|
||||
if err := pem.Encode(&keyBuffer, &pem.Block{Type: RSAPrivateKeyBlockType, Bytes: x509.MarshalPKCS1PrivateKey(priv)}); err != nil {
|
||||
if err := pem.Encode(&keyBuffer, &pem.Block{Type: keyutil.RSAPrivateKeyBlockType, Bytes: x509.MarshalPKCS1PrivateKey(priv)}); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if len(fixtureDirectory) > 0 {
|
||||
if err := ioutil.WriteFile(certFixturePath, certBuffer.Bytes(), 0644); err != nil {
|
||||
return nil, nil, fmt.Errorf("failed to write cert fixture to %s: %v", certFixturePath, err)
|
||||
}
|
||||
if err := ioutil.WriteFile(keyFixturePath, keyBuffer.Bytes(), 0644); err != nil {
|
||||
return nil, nil, fmt.Errorf("failed to write key fixture to %s: %v", certFixturePath, err)
|
||||
}
|
||||
}
|
||||
|
||||
return certBuffer.Bytes(), keyBuffer.Bytes(), nil
|
||||
}
|
||||
|
||||
// FormatBytesCert receives byte array certificate and formats in human-readable format
|
||||
func FormatBytesCert(cert []byte) (string, error) {
|
||||
block, _ := pem.Decode(cert)
|
||||
c, err := x509.ParseCertificate(block.Bytes)
|
||||
if err != nil {
|
||||
return "", fmt.Errorf("failed to parse certificate [%v]", err)
|
||||
func ipsToStrings(ips []net.IP) []string {
|
||||
ss := make([]string, 0, len(ips))
|
||||
for _, ip := range ips {
|
||||
ss = append(ss, ip.String())
|
||||
}
|
||||
return FormatCert(c), nil
|
||||
}
|
||||
|
||||
// FormatCert receives certificate and formats in human-readable format
|
||||
func FormatCert(c *x509.Certificate) string {
|
||||
var ips []string
|
||||
for _, ip := range c.IPAddresses {
|
||||
ips = append(ips, ip.String())
|
||||
}
|
||||
altNames := append(ips, c.DNSNames...)
|
||||
res := fmt.Sprintf(
|
||||
"Issuer: CN=%s | Subject: CN=%s | CA: %t\n",
|
||||
c.Issuer.CommonName, c.Subject.CommonName, c.IsCA,
|
||||
)
|
||||
res += fmt.Sprintf("Not before: %s Not After: %s", c.NotBefore, c.NotAfter)
|
||||
if len(altNames) > 0 {
|
||||
res += fmt.Sprintf("\nAlternate Names: %v", altNames)
|
||||
}
|
||||
return res
|
||||
return ss
|
||||
}
|
||||
|
|
95
vendor/k8s.io/client-go/util/cert/io.go
generated
vendored
95
vendor/k8s.io/client-go/util/cert/io.go
generated
vendored
|
@ -17,11 +17,7 @@ limitations under the License.
|
|||
package cert
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/ecdsa"
|
||||
"crypto/rsa"
|
||||
"crypto/x509"
|
||||
"encoding/pem"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"os"
|
||||
|
@ -73,60 +69,6 @@ func WriteCert(certPath string, data []byte) error {
|
|||
return ioutil.WriteFile(certPath, data, os.FileMode(0644))
|
||||
}
|
||||
|
||||
// WriteKey writes the pem-encoded key data to keyPath.
|
||||
// The key file will be created with file mode 0600.
|
||||
// If the key file already exists, it will be overwritten.
|
||||
// The parent directory of the keyPath will be created as needed with file mode 0755.
|
||||
func WriteKey(keyPath string, data []byte) error {
|
||||
if err := os.MkdirAll(filepath.Dir(keyPath), os.FileMode(0755)); err != nil {
|
||||
return err
|
||||
}
|
||||
return ioutil.WriteFile(keyPath, data, os.FileMode(0600))
|
||||
}
|
||||
|
||||
// LoadOrGenerateKeyFile looks for a key in the file at the given path. If it
|
||||
// can't find one, it will generate a new key and store it there.
|
||||
func LoadOrGenerateKeyFile(keyPath string) (data []byte, wasGenerated bool, err error) {
|
||||
loadedData, err := ioutil.ReadFile(keyPath)
|
||||
// Call verifyKeyData to ensure the file wasn't empty/corrupt.
|
||||
if err == nil && verifyKeyData(loadedData) {
|
||||
return loadedData, false, err
|
||||
}
|
||||
if !os.IsNotExist(err) {
|
||||
return nil, false, fmt.Errorf("error loading key from %s: %v", keyPath, err)
|
||||
}
|
||||
|
||||
generatedData, err := MakeEllipticPrivateKeyPEM()
|
||||
if err != nil {
|
||||
return nil, false, fmt.Errorf("error generating key: %v", err)
|
||||
}
|
||||
if err := WriteKey(keyPath, generatedData); err != nil {
|
||||
return nil, false, fmt.Errorf("error writing key to %s: %v", keyPath, err)
|
||||
}
|
||||
return generatedData, true, nil
|
||||
}
|
||||
|
||||
// MarshalPrivateKeyToPEM converts a known private key type of RSA or ECDSA to
|
||||
// a PEM encoded block or returns an error.
|
||||
func MarshalPrivateKeyToPEM(privateKey crypto.PrivateKey) ([]byte, error) {
|
||||
switch t := privateKey.(type) {
|
||||
case *ecdsa.PrivateKey:
|
||||
derBytes, err := x509.MarshalECPrivateKey(t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
privateKeyPemBlock := &pem.Block{
|
||||
Type: ECPrivateKeyBlockType,
|
||||
Bytes: derBytes,
|
||||
}
|
||||
return pem.EncodeToMemory(privateKeyPemBlock), nil
|
||||
case *rsa.PrivateKey:
|
||||
return EncodePrivateKeyPEM(t), nil
|
||||
default:
|
||||
return nil, fmt.Errorf("private key is not a recognized type: %T", privateKey)
|
||||
}
|
||||
}
|
||||
|
||||
// NewPool returns an x509.CertPool containing the certificates in the given PEM-encoded file.
|
||||
// Returns an error if the file could not be read, a certificate could not be parsed, or if the file does not contain any certificates
|
||||
func NewPool(filename string) (*x509.CertPool, error) {
|
||||
|
@ -154,40 +96,3 @@ func CertsFromFile(file string) ([]*x509.Certificate, error) {
|
|||
}
|
||||
return certs, nil
|
||||
}
|
||||
|
||||
// PrivateKeyFromFile returns the private key in rsa.PrivateKey or ecdsa.PrivateKey format from a given PEM-encoded file.
|
||||
// Returns an error if the file could not be read or if the private key could not be parsed.
|
||||
func PrivateKeyFromFile(file string) (interface{}, error) {
|
||||
data, err := ioutil.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
key, err := ParsePrivateKeyPEM(data)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error reading private key file %s: %v", file, err)
|
||||
}
|
||||
return key, nil
|
||||
}
|
||||
|
||||
// PublicKeysFromFile returns the public keys in rsa.PublicKey or ecdsa.PublicKey format from a given PEM-encoded file.
|
||||
// Reads public keys from both public and private key files.
|
||||
func PublicKeysFromFile(file string) ([]interface{}, error) {
|
||||
data, err := ioutil.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
keys, err := ParsePublicKeysPEM(data)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error reading public key file %s: %v", file, err)
|
||||
}
|
||||
return keys, nil
|
||||
}
|
||||
|
||||
// verifyKeyData returns true if the provided data appears to be a valid private key.
|
||||
func verifyKeyData(data []byte) bool {
|
||||
if len(data) == 0 {
|
||||
return false
|
||||
}
|
||||
_, err := ParsePrivateKeyPEM(data)
|
||||
return err == nil
|
||||
}
|
||||
|
|
208
vendor/k8s.io/client-go/util/cert/pem.go
generated
vendored
208
vendor/k8s.io/client-go/util/cert/pem.go
generated
vendored
|
@ -17,136 +17,18 @@ limitations under the License.
|
|||
package cert
|
||||
|
||||
import (
|
||||
"crypto/ecdsa"
|
||||
"crypto/rsa"
|
||||
"crypto/x509"
|
||||
"encoding/pem"
|
||||
"errors"
|
||||
"fmt"
|
||||
)
|
||||
|
||||
const (
|
||||
// ECPrivateKeyBlockType is a possible value for pem.Block.Type.
|
||||
ECPrivateKeyBlockType = "EC PRIVATE KEY"
|
||||
// RSAPrivateKeyBlockType is a possible value for pem.Block.Type.
|
||||
RSAPrivateKeyBlockType = "RSA PRIVATE KEY"
|
||||
// PrivateKeyBlockType is a possible value for pem.Block.Type.
|
||||
PrivateKeyBlockType = "PRIVATE KEY"
|
||||
// PublicKeyBlockType is a possible value for pem.Block.Type.
|
||||
PublicKeyBlockType = "PUBLIC KEY"
|
||||
// CertificateBlockType is a possible value for pem.Block.Type.
|
||||
CertificateBlockType = "CERTIFICATE"
|
||||
// CertificateRequestBlockType is a possible value for pem.Block.Type.
|
||||
CertificateRequestBlockType = "CERTIFICATE REQUEST"
|
||||
)
|
||||
|
||||
// EncodePublicKeyPEM returns PEM-encoded public data
|
||||
func EncodePublicKeyPEM(key *rsa.PublicKey) ([]byte, error) {
|
||||
der, err := x509.MarshalPKIXPublicKey(key)
|
||||
if err != nil {
|
||||
return []byte{}, err
|
||||
}
|
||||
block := pem.Block{
|
||||
Type: PublicKeyBlockType,
|
||||
Bytes: der,
|
||||
}
|
||||
return pem.EncodeToMemory(&block), nil
|
||||
}
|
||||
|
||||
// EncodePrivateKeyPEM returns PEM-encoded private key data
|
||||
func EncodePrivateKeyPEM(key *rsa.PrivateKey) []byte {
|
||||
block := pem.Block{
|
||||
Type: RSAPrivateKeyBlockType,
|
||||
Bytes: x509.MarshalPKCS1PrivateKey(key),
|
||||
}
|
||||
return pem.EncodeToMemory(&block)
|
||||
}
|
||||
|
||||
// EncodeCertPEM returns PEM-endcoded certificate data
|
||||
func EncodeCertPEM(cert *x509.Certificate) []byte {
|
||||
block := pem.Block{
|
||||
Type: CertificateBlockType,
|
||||
Bytes: cert.Raw,
|
||||
}
|
||||
return pem.EncodeToMemory(&block)
|
||||
}
|
||||
|
||||
// ParsePrivateKeyPEM returns a private key parsed from a PEM block in the supplied data.
|
||||
// Recognizes PEM blocks for "EC PRIVATE KEY", "RSA PRIVATE KEY", or "PRIVATE KEY"
|
||||
func ParsePrivateKeyPEM(keyData []byte) (interface{}, error) {
|
||||
var privateKeyPemBlock *pem.Block
|
||||
for {
|
||||
privateKeyPemBlock, keyData = pem.Decode(keyData)
|
||||
if privateKeyPemBlock == nil {
|
||||
break
|
||||
}
|
||||
|
||||
switch privateKeyPemBlock.Type {
|
||||
case ECPrivateKeyBlockType:
|
||||
// ECDSA Private Key in ASN.1 format
|
||||
if key, err := x509.ParseECPrivateKey(privateKeyPemBlock.Bytes); err == nil {
|
||||
return key, nil
|
||||
}
|
||||
case RSAPrivateKeyBlockType:
|
||||
// RSA Private Key in PKCS#1 format
|
||||
if key, err := x509.ParsePKCS1PrivateKey(privateKeyPemBlock.Bytes); err == nil {
|
||||
return key, nil
|
||||
}
|
||||
case PrivateKeyBlockType:
|
||||
// RSA or ECDSA Private Key in unencrypted PKCS#8 format
|
||||
if key, err := x509.ParsePKCS8PrivateKey(privateKeyPemBlock.Bytes); err == nil {
|
||||
return key, nil
|
||||
}
|
||||
}
|
||||
|
||||
// tolerate non-key PEM blocks for compatibility with things like "EC PARAMETERS" blocks
|
||||
// originally, only the first PEM block was parsed and expected to be a key block
|
||||
}
|
||||
|
||||
// we read all the PEM blocks and didn't recognize one
|
||||
return nil, fmt.Errorf("data does not contain a valid RSA or ECDSA private key")
|
||||
}
|
||||
|
||||
// ParsePublicKeysPEM is a helper function for reading an array of rsa.PublicKey or ecdsa.PublicKey from a PEM-encoded byte array.
|
||||
// Reads public keys from both public and private key files.
|
||||
func ParsePublicKeysPEM(keyData []byte) ([]interface{}, error) {
|
||||
var block *pem.Block
|
||||
keys := []interface{}{}
|
||||
for {
|
||||
// read the next block
|
||||
block, keyData = pem.Decode(keyData)
|
||||
if block == nil {
|
||||
break
|
||||
}
|
||||
|
||||
// test block against parsing functions
|
||||
if privateKey, err := parseRSAPrivateKey(block.Bytes); err == nil {
|
||||
keys = append(keys, &privateKey.PublicKey)
|
||||
continue
|
||||
}
|
||||
if publicKey, err := parseRSAPublicKey(block.Bytes); err == nil {
|
||||
keys = append(keys, publicKey)
|
||||
continue
|
||||
}
|
||||
if privateKey, err := parseECPrivateKey(block.Bytes); err == nil {
|
||||
keys = append(keys, &privateKey.PublicKey)
|
||||
continue
|
||||
}
|
||||
if publicKey, err := parseECPublicKey(block.Bytes); err == nil {
|
||||
keys = append(keys, publicKey)
|
||||
continue
|
||||
}
|
||||
|
||||
// tolerate non-key PEM blocks for backwards compatibility
|
||||
// originally, only the first PEM block was parsed and expected to be a key block
|
||||
}
|
||||
|
||||
if len(keys) == 0 {
|
||||
return nil, fmt.Errorf("data does not contain any valid RSA or ECDSA public keys")
|
||||
}
|
||||
return keys, nil
|
||||
}
|
||||
|
||||
// ParseCertsPEM returns the x509.Certificates contained in the given PEM-encoded byte array
|
||||
// Returns an error if a certificate could not be parsed, or if the data does not contain any certificates
|
||||
func ParseCertsPEM(pemCerts []byte) ([]*x509.Certificate, error) {
|
||||
|
@ -177,93 +59,3 @@ func ParseCertsPEM(pemCerts []byte) ([]*x509.Certificate, error) {
|
|||
}
|
||||
return certs, nil
|
||||
}
|
||||
|
||||
// parseRSAPublicKey parses a single RSA public key from the provided data
|
||||
func parseRSAPublicKey(data []byte) (*rsa.PublicKey, error) {
|
||||
var err error
|
||||
|
||||
// Parse the key
|
||||
var parsedKey interface{}
|
||||
if parsedKey, err = x509.ParsePKIXPublicKey(data); err != nil {
|
||||
if cert, err := x509.ParseCertificate(data); err == nil {
|
||||
parsedKey = cert.PublicKey
|
||||
} else {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// Test if parsed key is an RSA Public Key
|
||||
var pubKey *rsa.PublicKey
|
||||
var ok bool
|
||||
if pubKey, ok = parsedKey.(*rsa.PublicKey); !ok {
|
||||
return nil, fmt.Errorf("data doesn't contain valid RSA Public Key")
|
||||
}
|
||||
|
||||
return pubKey, nil
|
||||
}
|
||||
|
||||
// parseRSAPrivateKey parses a single RSA private key from the provided data
|
||||
func parseRSAPrivateKey(data []byte) (*rsa.PrivateKey, error) {
|
||||
var err error
|
||||
|
||||
// Parse the key
|
||||
var parsedKey interface{}
|
||||
if parsedKey, err = x509.ParsePKCS1PrivateKey(data); err != nil {
|
||||
if parsedKey, err = x509.ParsePKCS8PrivateKey(data); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// Test if parsed key is an RSA Private Key
|
||||
var privKey *rsa.PrivateKey
|
||||
var ok bool
|
||||
if privKey, ok = parsedKey.(*rsa.PrivateKey); !ok {
|
||||
return nil, fmt.Errorf("data doesn't contain valid RSA Private Key")
|
||||
}
|
||||
|
||||
return privKey, nil
|
||||
}
|
||||
|
||||
// parseECPublicKey parses a single ECDSA public key from the provided data
|
||||
func parseECPublicKey(data []byte) (*ecdsa.PublicKey, error) {
|
||||
var err error
|
||||
|
||||
// Parse the key
|
||||
var parsedKey interface{}
|
||||
if parsedKey, err = x509.ParsePKIXPublicKey(data); err != nil {
|
||||
if cert, err := x509.ParseCertificate(data); err == nil {
|
||||
parsedKey = cert.PublicKey
|
||||
} else {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// Test if parsed key is an ECDSA Public Key
|
||||
var pubKey *ecdsa.PublicKey
|
||||
var ok bool
|
||||
if pubKey, ok = parsedKey.(*ecdsa.PublicKey); !ok {
|
||||
return nil, fmt.Errorf("data doesn't contain valid ECDSA Public Key")
|
||||
}
|
||||
|
||||
return pubKey, nil
|
||||
}
|
||||
|
||||
// parseECPrivateKey parses a single ECDSA private key from the provided data
|
||||
func parseECPrivateKey(data []byte) (*ecdsa.PrivateKey, error) {
|
||||
var err error
|
||||
|
||||
// Parse the key
|
||||
var parsedKey interface{}
|
||||
if parsedKey, err = x509.ParseECPrivateKey(data); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Test if parsed key is an ECDSA Private Key
|
||||
var privKey *ecdsa.PrivateKey
|
||||
var ok bool
|
||||
if privKey, ok = parsedKey.(*ecdsa.PrivateKey); !ok {
|
||||
return nil, fmt.Errorf("data doesn't contain valid ECDSA Private Key")
|
||||
}
|
||||
|
||||
return privKey, nil
|
||||
}
|
||||
|
|
4
vendor/k8s.io/client-go/util/flowcontrol/backoff.go
generated
vendored
4
vendor/k8s.io/client-go/util/flowcontrol/backoff.go
generated
vendored
|
@ -21,7 +21,7 @@ import (
|
|||
"time"
|
||||
|
||||
"k8s.io/apimachinery/pkg/util/clock"
|
||||
"k8s.io/client-go/util/integer"
|
||||
"k8s.io/utils/integer"
|
||||
)
|
||||
|
||||
type backoffEntry struct {
|
||||
|
@ -99,7 +99,7 @@ func (p *Backoff) IsInBackOffSince(id string, eventTime time.Time) bool {
|
|||
if hasExpired(eventTime, entry.lastUpdate, p.maxDuration) {
|
||||
return false
|
||||
}
|
||||
return p.Clock.Now().Sub(eventTime) < entry.backoff
|
||||
return p.Clock.Since(eventTime) < entry.backoff
|
||||
}
|
||||
|
||||
// Returns True if time since lastupdate is less than the current backoff window.
|
||||
|
|
67
vendor/k8s.io/client-go/util/integer/integer.go
generated
vendored
67
vendor/k8s.io/client-go/util/integer/integer.go
generated
vendored
|
@ -1,67 +0,0 @@
|
|||
/*
|
||||
Copyright 2016 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package integer
|
||||
|
||||
func IntMax(a, b int) int {
|
||||
if b > a {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
func IntMin(a, b int) int {
|
||||
if b < a {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
func Int32Max(a, b int32) int32 {
|
||||
if b > a {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
func Int32Min(a, b int32) int32 {
|
||||
if b < a {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
func Int64Max(a, b int64) int64 {
|
||||
if b > a {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
func Int64Min(a, b int64) int64 {
|
||||
if b < a {
|
||||
return b
|
||||
}
|
||||
return a
|
||||
}
|
||||
|
||||
// RoundToInt32 rounds floats into integer numbers.
|
||||
func RoundToInt32(a float64) int32 {
|
||||
if a < 0 {
|
||||
return int32(a - 0.5)
|
||||
}
|
||||
return int32(a + 0.5)
|
||||
}
|
323
vendor/k8s.io/client-go/util/keyutil/key.go
generated
vendored
Normal file
323
vendor/k8s.io/client-go/util/keyutil/key.go
generated
vendored
Normal file
|
@ -0,0 +1,323 @@
|
|||
/*
|
||||
Copyright 2018 The Kubernetes Authors.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
// Package keyutil contains utilities for managing public/private key pairs.
|
||||
package keyutil
|
||||
|
||||
import (
|
||||
"crypto"
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
cryptorand "crypto/rand"
|
||||
"crypto/rsa"
|
||||
"crypto/x509"
|
||||
"encoding/pem"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
"os"
|
||||
"path/filepath"
|
||||
)
|
||||
|
||||
const (
|
||||
// ECPrivateKeyBlockType is a possible value for pem.Block.Type.
|
||||
ECPrivateKeyBlockType = "EC PRIVATE KEY"
|
||||
// RSAPrivateKeyBlockType is a possible value for pem.Block.Type.
|
||||
RSAPrivateKeyBlockType = "RSA PRIVATE KEY"
|
||||
// PrivateKeyBlockType is a possible value for pem.Block.Type.
|
||||
PrivateKeyBlockType = "PRIVATE KEY"
|
||||
// PublicKeyBlockType is a possible value for pem.Block.Type.
|
||||
PublicKeyBlockType = "PUBLIC KEY"
|
||||
)
|
||||
|
||||
// MakeEllipticPrivateKeyPEM creates an ECDSA private key
|
||||
func MakeEllipticPrivateKeyPEM() ([]byte, error) {
|
||||
privateKey, err := ecdsa.GenerateKey(elliptic.P256(), cryptorand.Reader)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
derBytes, err := x509.MarshalECPrivateKey(privateKey)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
privateKeyPemBlock := &pem.Block{
|
||||
Type: ECPrivateKeyBlockType,
|
||||
Bytes: derBytes,
|
||||
}
|
||||
return pem.EncodeToMemory(privateKeyPemBlock), nil
|
||||
}
|
||||
|
||||
// WriteKey writes the pem-encoded key data to keyPath.
|
||||
// The key file will be created with file mode 0600.
|
||||
// If the key file already exists, it will be overwritten.
|
||||
// The parent directory of the keyPath will be created as needed with file mode 0755.
|
||||
func WriteKey(keyPath string, data []byte) error {
|
||||
if err := os.MkdirAll(filepath.Dir(keyPath), os.FileMode(0755)); err != nil {
|
||||
return err
|
||||
}
|
||||
return ioutil.WriteFile(keyPath, data, os.FileMode(0600))
|
||||
}
|
||||
|
||||
// LoadOrGenerateKeyFile looks for a key in the file at the given path. If it
|
||||
// can't find one, it will generate a new key and store it there.
|
||||
func LoadOrGenerateKeyFile(keyPath string) (data []byte, wasGenerated bool, err error) {
|
||||
loadedData, err := ioutil.ReadFile(keyPath)
|
||||
// Call verifyKeyData to ensure the file wasn't empty/corrupt.
|
||||
if err == nil && verifyKeyData(loadedData) {
|
||||
return loadedData, false, err
|
||||
}
|
||||
if !os.IsNotExist(err) {
|
||||
return nil, false, fmt.Errorf("error loading key from %s: %v", keyPath, err)
|
||||
}
|
||||
|
||||
generatedData, err := MakeEllipticPrivateKeyPEM()
|
||||
if err != nil {
|
||||
return nil, false, fmt.Errorf("error generating key: %v", err)
|
||||
}
|
||||
if err := WriteKey(keyPath, generatedData); err != nil {
|
||||
return nil, false, fmt.Errorf("error writing key to %s: %v", keyPath, err)
|
||||
}
|
||||
return generatedData, true, nil
|
||||
}
|
||||
|
||||
// MarshalPrivateKeyToPEM converts a known private key type of RSA or ECDSA to
|
||||
// a PEM encoded block or returns an error.
|
||||
func MarshalPrivateKeyToPEM(privateKey crypto.PrivateKey) ([]byte, error) {
|
||||
switch t := privateKey.(type) {
|
||||
case *ecdsa.PrivateKey:
|
||||
derBytes, err := x509.MarshalECPrivateKey(t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
block := &pem.Block{
|
||||
Type: ECPrivateKeyBlockType,
|
||||
Bytes: derBytes,
|
||||
}
|
||||
return pem.EncodeToMemory(block), nil
|
||||
case *rsa.PrivateKey:
|
||||
block := &pem.Block{
|
||||
Type: RSAPrivateKeyBlockType,
|
||||
Bytes: x509.MarshalPKCS1PrivateKey(t),
|
||||
}
|
||||
return pem.EncodeToMemory(block), nil
|
||||
default:
|
||||
return nil, fmt.Errorf("private key is not a recognized type: %T", privateKey)
|
||||
}
|
||||
}
|
||||
|
||||
// PrivateKeyFromFile returns the private key in rsa.PrivateKey or ecdsa.PrivateKey format from a given PEM-encoded file.
|
||||
// Returns an error if the file could not be read or if the private key could not be parsed.
|
||||
func PrivateKeyFromFile(file string) (interface{}, error) {
|
||||
data, err := ioutil.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
key, err := ParsePrivateKeyPEM(data)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error reading private key file %s: %v", file, err)
|
||||
}
|
||||
return key, nil
|
||||
}
|
||||
|
||||
// PublicKeysFromFile returns the public keys in rsa.PublicKey or ecdsa.PublicKey format from a given PEM-encoded file.
|
||||
// Reads public keys from both public and private key files.
|
||||
func PublicKeysFromFile(file string) ([]interface{}, error) {
|
||||
data, err := ioutil.ReadFile(file)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
keys, err := ParsePublicKeysPEM(data)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error reading public key file %s: %v", file, err)
|
||||
}
|
||||
return keys, nil
|
||||
}
|
||||
|
||||
// verifyKeyData returns true if the provided data appears to be a valid private key.
|
||||
func verifyKeyData(data []byte) bool {
|
||||
if len(data) == 0 {
|
||||
return false
|
||||
}
|
||||
_, err := ParsePrivateKeyPEM(data)
|
||||
return err == nil
|
||||
}
|
||||
|
||||
// ParsePrivateKeyPEM returns a private key parsed from a PEM block in the supplied data.
|
||||
// Recognizes PEM blocks for "EC PRIVATE KEY", "RSA PRIVATE KEY", or "PRIVATE KEY"
|
||||
func ParsePrivateKeyPEM(keyData []byte) (interface{}, error) {
|
||||
var privateKeyPemBlock *pem.Block
|
||||
for {
|
||||
privateKeyPemBlock, keyData = pem.Decode(keyData)
|
||||
if privateKeyPemBlock == nil {
|
||||
break
|
||||
}
|
||||
|
||||
switch privateKeyPemBlock.Type {
|
||||
case ECPrivateKeyBlockType:
|
||||
// ECDSA Private Key in ASN.1 format
|
||||
if key, err := x509.ParseECPrivateKey(privateKeyPemBlock.Bytes); err == nil {
|
||||
return key, nil
|
||||
}
|
||||
case RSAPrivateKeyBlockType:
|
||||
// RSA Private Key in PKCS#1 format
|
||||
if key, err := x509.ParsePKCS1PrivateKey(privateKeyPemBlock.Bytes); err == nil {
|
||||
return key, nil
|
||||
}
|
||||
case PrivateKeyBlockType:
|
||||
// RSA or ECDSA Private Key in unencrypted PKCS#8 format
|
||||
if key, err := x509.ParsePKCS8PrivateKey(privateKeyPemBlock.Bytes); err == nil {
|
||||
return key, nil
|
||||
}
|
||||
}
|
||||
|
||||
// tolerate non-key PEM blocks for compatibility with things like "EC PARAMETERS" blocks
|
||||
// originally, only the first PEM block was parsed and expected to be a key block
|
||||
}
|
||||
|
||||
// we read all the PEM blocks and didn't recognize one
|
||||
return nil, fmt.Errorf("data does not contain a valid RSA or ECDSA private key")
|
||||
}
|
||||
|
||||
// ParsePublicKeysPEM is a helper function for reading an array of rsa.PublicKey or ecdsa.PublicKey from a PEM-encoded byte array.
|
||||
// Reads public keys from both public and private key files.
|
||||
func ParsePublicKeysPEM(keyData []byte) ([]interface{}, error) {
|
||||
var block *pem.Block
|
||||
keys := []interface{}{}
|
||||
for {
|
||||
// read the next block
|
||||
block, keyData = pem.Decode(keyData)
|
||||
if block == nil {
|
||||
break
|
||||
}
|
||||
|
||||
// test block against parsing functions
|
||||
if privateKey, err := parseRSAPrivateKey(block.Bytes); err == nil {
|
||||
keys = append(keys, &privateKey.PublicKey)
|
||||
continue
|
||||
}
|
||||
if publicKey, err := parseRSAPublicKey(block.Bytes); err == nil {
|
||||
keys = append(keys, publicKey)
|
||||
continue
|
||||
}
|
||||
if privateKey, err := parseECPrivateKey(block.Bytes); err == nil {
|
||||
keys = append(keys, &privateKey.PublicKey)
|
||||
continue
|
||||
}
|
||||
if publicKey, err := parseECPublicKey(block.Bytes); err == nil {
|
||||
keys = append(keys, publicKey)
|
||||
continue
|
||||
}
|
||||
|
||||
// tolerate non-key PEM blocks for backwards compatibility
|
||||
// originally, only the first PEM block was parsed and expected to be a key block
|
||||
}
|
||||
|
||||
if len(keys) == 0 {
|
||||
return nil, fmt.Errorf("data does not contain any valid RSA or ECDSA public keys")
|
||||
}
|
||||
return keys, nil
|
||||
}
|
||||
|
||||
// parseRSAPublicKey parses a single RSA public key from the provided data
|
||||
func parseRSAPublicKey(data []byte) (*rsa.PublicKey, error) {
|
||||
var err error
|
||||
|
||||
// Parse the key
|
||||
var parsedKey interface{}
|
||||
if parsedKey, err = x509.ParsePKIXPublicKey(data); err != nil {
|
||||
if cert, err := x509.ParseCertificate(data); err == nil {
|
||||
parsedKey = cert.PublicKey
|
||||
} else {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// Test if parsed key is an RSA Public Key
|
||||
var pubKey *rsa.PublicKey
|
||||
var ok bool
|
||||
if pubKey, ok = parsedKey.(*rsa.PublicKey); !ok {
|
||||
return nil, fmt.Errorf("data doesn't contain valid RSA Public Key")
|
||||
}
|
||||
|
||||
return pubKey, nil
|
||||
}
|
||||
|
||||
// parseRSAPrivateKey parses a single RSA private key from the provided data
|
||||
func parseRSAPrivateKey(data []byte) (*rsa.PrivateKey, error) {
|
||||
var err error
|
||||
|
||||
// Parse the key
|
||||
var parsedKey interface{}
|
||||
if parsedKey, err = x509.ParsePKCS1PrivateKey(data); err != nil {
|
||||
if parsedKey, err = x509.ParsePKCS8PrivateKey(data); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// Test if parsed key is an RSA Private Key
|
||||
var privKey *rsa.PrivateKey
|
||||
var ok bool
|
||||
if privKey, ok = parsedKey.(*rsa.PrivateKey); !ok {
|
||||
return nil, fmt.Errorf("data doesn't contain valid RSA Private Key")
|
||||
}
|
||||
|
||||
return privKey, nil
|
||||
}
|
||||
|
||||
// parseECPublicKey parses a single ECDSA public key from the provided data
|
||||
func parseECPublicKey(data []byte) (*ecdsa.PublicKey, error) {
|
||||
var err error
|
||||
|
||||
// Parse the key
|
||||
var parsedKey interface{}
|
||||
if parsedKey, err = x509.ParsePKIXPublicKey(data); err != nil {
|
||||
if cert, err := x509.ParseCertificate(data); err == nil {
|
||||
parsedKey = cert.PublicKey
|
||||
} else {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// Test if parsed key is an ECDSA Public Key
|
||||
var pubKey *ecdsa.PublicKey
|
||||
var ok bool
|
||||
if pubKey, ok = parsedKey.(*ecdsa.PublicKey); !ok {
|
||||
return nil, fmt.Errorf("data doesn't contain valid ECDSA Public Key")
|
||||
}
|
||||
|
||||
return pubKey, nil
|
||||
}
|
||||
|
||||
// parseECPrivateKey parses a single ECDSA private key from the provided data
|
||||
func parseECPrivateKey(data []byte) (*ecdsa.PrivateKey, error) {
|
||||
var err error
|
||||
|
||||
// Parse the key
|
||||
var parsedKey interface{}
|
||||
if parsedKey, err = x509.ParseECPrivateKey(data); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// Test if parsed key is an ECDSA Private Key
|
||||
var privKey *ecdsa.PrivateKey
|
||||
var ok bool
|
||||
if privKey, ok = parsedKey.(*ecdsa.PrivateKey); !ok {
|
||||
return nil, fmt.Errorf("data doesn't contain valid ECDSA Private Key")
|
||||
}
|
||||
|
||||
return privKey, nil
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue