1
0
Fork 0

fix: update lego.

This commit is contained in:
Ludovic Fernandez 2019-03-27 11:18:04 +01:00 committed by Traefiker Bot
parent b893374dc1
commit c17de070fb
432 changed files with 182 additions and 259514 deletions

View file

@ -1,354 +0,0 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

View file

@ -1,193 +0,0 @@
package api
import (
"time"
)
const (
// ACLCLientType is the client type token
ACLClientType = "client"
// ACLManagementType is the management type token
ACLManagementType = "management"
)
// ACLEntry is used to represent an ACL entry
type ACLEntry struct {
CreateIndex uint64
ModifyIndex uint64
ID string
Name string
Type string
Rules string
}
// ACLReplicationStatus is used to represent the status of ACL replication.
type ACLReplicationStatus struct {
Enabled bool
Running bool
SourceDatacenter string
ReplicatedIndex uint64
LastSuccess time.Time
LastError time.Time
}
// ACL can be used to query the ACL endpoints
type ACL struct {
c *Client
}
// ACL returns a handle to the ACL endpoints
func (c *Client) ACL() *ACL {
return &ACL{c}
}
// Bootstrap is used to perform a one-time ACL bootstrap operation on a cluster
// to get the first management token.
func (a *ACL) Bootstrap() (string, *WriteMeta, error) {
r := a.c.newRequest("PUT", "/v1/acl/bootstrap")
rtt, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return "", nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{RequestTime: rtt}
var out struct{ ID string }
if err := decodeBody(resp, &out); err != nil {
return "", nil, err
}
return out.ID, wm, nil
}
// Create is used to generate a new token with the given parameters
func (a *ACL) Create(acl *ACLEntry, q *WriteOptions) (string, *WriteMeta, error) {
r := a.c.newRequest("PUT", "/v1/acl/create")
r.setWriteOptions(q)
r.obj = acl
rtt, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return "", nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{RequestTime: rtt}
var out struct{ ID string }
if err := decodeBody(resp, &out); err != nil {
return "", nil, err
}
return out.ID, wm, nil
}
// Update is used to update the rules of an existing token
func (a *ACL) Update(acl *ACLEntry, q *WriteOptions) (*WriteMeta, error) {
r := a.c.newRequest("PUT", "/v1/acl/update")
r.setWriteOptions(q)
r.obj = acl
rtt, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{RequestTime: rtt}
return wm, nil
}
// Destroy is used to destroy a given ACL token ID
func (a *ACL) Destroy(id string, q *WriteOptions) (*WriteMeta, error) {
r := a.c.newRequest("PUT", "/v1/acl/destroy/"+id)
r.setWriteOptions(q)
rtt, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
resp.Body.Close()
wm := &WriteMeta{RequestTime: rtt}
return wm, nil
}
// Clone is used to return a new token cloned from an existing one
func (a *ACL) Clone(id string, q *WriteOptions) (string, *WriteMeta, error) {
r := a.c.newRequest("PUT", "/v1/acl/clone/"+id)
r.setWriteOptions(q)
rtt, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return "", nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{RequestTime: rtt}
var out struct{ ID string }
if err := decodeBody(resp, &out); err != nil {
return "", nil, err
}
return out.ID, wm, nil
}
// Info is used to query for information about an ACL token
func (a *ACL) Info(id string, q *QueryOptions) (*ACLEntry, *QueryMeta, error) {
r := a.c.newRequest("GET", "/v1/acl/info/"+id)
r.setQueryOptions(q)
rtt, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var entries []*ACLEntry
if err := decodeBody(resp, &entries); err != nil {
return nil, nil, err
}
if len(entries) > 0 {
return entries[0], qm, nil
}
return nil, qm, nil
}
// List is used to get all the ACL tokens
func (a *ACL) List(q *QueryOptions) ([]*ACLEntry, *QueryMeta, error) {
r := a.c.newRequest("GET", "/v1/acl/list")
r.setQueryOptions(q)
rtt, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var entries []*ACLEntry
if err := decodeBody(resp, &entries); err != nil {
return nil, nil, err
}
return entries, qm, nil
}
// Replication returns the status of the ACL replication process in the datacenter
func (a *ACL) Replication(q *QueryOptions) (*ACLReplicationStatus, *QueryMeta, error) {
r := a.c.newRequest("GET", "/v1/acl/replication")
r.setQueryOptions(q)
rtt, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var entries *ACLReplicationStatus
if err := decodeBody(resp, &entries); err != nil {
return nil, nil, err
}
return entries, qm, nil
}

View file

@ -1,624 +0,0 @@
package api
import (
"bufio"
"fmt"
)
// AgentCheck represents a check known to the agent
type AgentCheck struct {
Node string
CheckID string
Name string
Status string
Notes string
Output string
ServiceID string
ServiceName string
Definition HealthCheckDefinition
}
// AgentService represents a service known to the agent
type AgentService struct {
ID string
Service string
Tags []string
Port int
Address string
EnableTagOverride bool
CreateIndex uint64
ModifyIndex uint64
}
// AgentMember represents a cluster member known to the agent
type AgentMember struct {
Name string
Addr string
Port uint16
Tags map[string]string
Status int
ProtocolMin uint8
ProtocolMax uint8
ProtocolCur uint8
DelegateMin uint8
DelegateMax uint8
DelegateCur uint8
}
// AllSegments is used to select for all segments in MembersOpts.
const AllSegments = "_all"
// MembersOpts is used for querying member information.
type MembersOpts struct {
// WAN is whether to show members from the WAN.
WAN bool
// Segment is the LAN segment to show members for. Setting this to the
// AllSegments value above will show members in all segments.
Segment string
}
// AgentServiceRegistration is used to register a new service
type AgentServiceRegistration struct {
ID string `json:",omitempty"`
Name string `json:",omitempty"`
Tags []string `json:",omitempty"`
Port int `json:",omitempty"`
Address string `json:",omitempty"`
EnableTagOverride bool `json:",omitempty"`
Check *AgentServiceCheck
Checks AgentServiceChecks
}
// AgentCheckRegistration is used to register a new check
type AgentCheckRegistration struct {
ID string `json:",omitempty"`
Name string `json:",omitempty"`
Notes string `json:",omitempty"`
ServiceID string `json:",omitempty"`
AgentServiceCheck
}
// AgentServiceCheck is used to define a node or service level check
type AgentServiceCheck struct {
CheckID string `json:",omitempty"`
Name string `json:",omitempty"`
Args []string `json:"ScriptArgs,omitempty"`
Script string `json:",omitempty"` // Deprecated, use Args.
DockerContainerID string `json:",omitempty"`
Shell string `json:",omitempty"` // Only supported for Docker.
Interval string `json:",omitempty"`
Timeout string `json:",omitempty"`
TTL string `json:",omitempty"`
HTTP string `json:",omitempty"`
Header map[string][]string `json:",omitempty"`
Method string `json:",omitempty"`
TCP string `json:",omitempty"`
Status string `json:",omitempty"`
Notes string `json:",omitempty"`
TLSSkipVerify bool `json:",omitempty"`
// In Consul 0.7 and later, checks that are associated with a service
// may also contain this optional DeregisterCriticalServiceAfter field,
// which is a timeout in the same Go time format as Interval and TTL. If
// a check is in the critical state for more than this configured value,
// then its associated service (and all of its associated checks) will
// automatically be deregistered.
DeregisterCriticalServiceAfter string `json:",omitempty"`
}
type AgentServiceChecks []*AgentServiceCheck
// AgentToken is used when updating ACL tokens for an agent.
type AgentToken struct {
Token string
}
// Metrics info is used to store different types of metric values from the agent.
type MetricsInfo struct {
Timestamp string
Gauges []GaugeValue
Points []PointValue
Counters []SampledValue
Samples []SampledValue
}
// GaugeValue stores one value that is updated as time goes on, such as
// the amount of memory allocated.
type GaugeValue struct {
Name string
Value float32
Labels map[string]string
}
// PointValue holds a series of points for a metric.
type PointValue struct {
Name string
Points []float32
}
// SampledValue stores info about a metric that is incremented over time,
// such as the number of requests to an HTTP endpoint.
type SampledValue struct {
Name string
Count int
Sum float64
Min float64
Max float64
Mean float64
Stddev float64
Labels map[string]string
}
// Agent can be used to query the Agent endpoints
type Agent struct {
c *Client
// cache the node name
nodeName string
}
// Agent returns a handle to the agent endpoints
func (c *Client) Agent() *Agent {
return &Agent{c: c}
}
// Self is used to query the agent we are speaking to for
// information about itself
func (a *Agent) Self() (map[string]map[string]interface{}, error) {
r := a.c.newRequest("GET", "/v1/agent/self")
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out map[string]map[string]interface{}
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return out, nil
}
// Metrics is used to query the agent we are speaking to for
// its current internal metric data
func (a *Agent) Metrics() (*MetricsInfo, error) {
r := a.c.newRequest("GET", "/v1/agent/metrics")
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out *MetricsInfo
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return out, nil
}
// Reload triggers a configuration reload for the agent we are connected to.
func (a *Agent) Reload() error {
r := a.c.newRequest("PUT", "/v1/agent/reload")
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// NodeName is used to get the node name of the agent
func (a *Agent) NodeName() (string, error) {
if a.nodeName != "" {
return a.nodeName, nil
}
info, err := a.Self()
if err != nil {
return "", err
}
name := info["Config"]["NodeName"].(string)
a.nodeName = name
return name, nil
}
// Checks returns the locally registered checks
func (a *Agent) Checks() (map[string]*AgentCheck, error) {
r := a.c.newRequest("GET", "/v1/agent/checks")
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out map[string]*AgentCheck
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return out, nil
}
// Services returns the locally registered services
func (a *Agent) Services() (map[string]*AgentService, error) {
r := a.c.newRequest("GET", "/v1/agent/services")
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out map[string]*AgentService
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return out, nil
}
// Members returns the known gossip members. The WAN
// flag can be used to query a server for WAN members.
func (a *Agent) Members(wan bool) ([]*AgentMember, error) {
r := a.c.newRequest("GET", "/v1/agent/members")
if wan {
r.params.Set("wan", "1")
}
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out []*AgentMember
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return out, nil
}
// MembersOpts returns the known gossip members and can be passed
// additional options for WAN/segment filtering.
func (a *Agent) MembersOpts(opts MembersOpts) ([]*AgentMember, error) {
r := a.c.newRequest("GET", "/v1/agent/members")
r.params.Set("segment", opts.Segment)
if opts.WAN {
r.params.Set("wan", "1")
}
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out []*AgentMember
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return out, nil
}
// ServiceRegister is used to register a new service with
// the local agent
func (a *Agent) ServiceRegister(service *AgentServiceRegistration) error {
r := a.c.newRequest("PUT", "/v1/agent/service/register")
r.obj = service
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// ServiceDeregister is used to deregister a service with
// the local agent
func (a *Agent) ServiceDeregister(serviceID string) error {
r := a.c.newRequest("PUT", "/v1/agent/service/deregister/"+serviceID)
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// PassTTL is used to set a TTL check to the passing state.
//
// DEPRECATION NOTICE: This interface is deprecated in favor of UpdateTTL().
// The client interface will be removed in 0.8 or changed to use
// UpdateTTL()'s endpoint and the server endpoints will be removed in 0.9.
func (a *Agent) PassTTL(checkID, note string) error {
return a.updateTTL(checkID, note, "pass")
}
// WarnTTL is used to set a TTL check to the warning state.
//
// DEPRECATION NOTICE: This interface is deprecated in favor of UpdateTTL().
// The client interface will be removed in 0.8 or changed to use
// UpdateTTL()'s endpoint and the server endpoints will be removed in 0.9.
func (a *Agent) WarnTTL(checkID, note string) error {
return a.updateTTL(checkID, note, "warn")
}
// FailTTL is used to set a TTL check to the failing state.
//
// DEPRECATION NOTICE: This interface is deprecated in favor of UpdateTTL().
// The client interface will be removed in 0.8 or changed to use
// UpdateTTL()'s endpoint and the server endpoints will be removed in 0.9.
func (a *Agent) FailTTL(checkID, note string) error {
return a.updateTTL(checkID, note, "fail")
}
// updateTTL is used to update the TTL of a check. This is the internal
// method that uses the old API that's present in Consul versions prior to
// 0.6.4. Since Consul didn't have an analogous "update" API before it seemed
// ok to break this (former) UpdateTTL in favor of the new UpdateTTL below,
// but keep the old Pass/Warn/Fail methods using the old API under the hood.
//
// DEPRECATION NOTICE: This interface is deprecated in favor of UpdateTTL().
// The client interface will be removed in 0.8 and the server endpoints will
// be removed in 0.9.
func (a *Agent) updateTTL(checkID, note, status string) error {
switch status {
case "pass":
case "warn":
case "fail":
default:
return fmt.Errorf("Invalid status: %s", status)
}
endpoint := fmt.Sprintf("/v1/agent/check/%s/%s", status, checkID)
r := a.c.newRequest("PUT", endpoint)
r.params.Set("note", note)
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// checkUpdate is the payload for a PUT for a check update.
type checkUpdate struct {
// Status is one of the api.Health* states: HealthPassing
// ("passing"), HealthWarning ("warning"), or HealthCritical
// ("critical").
Status string
// Output is the information to post to the UI for operators as the
// output of the process that decided to hit the TTL check. This is
// different from the note field that's associated with the check
// itself.
Output string
}
// UpdateTTL is used to update the TTL of a check. This uses the newer API
// that was introduced in Consul 0.6.4 and later. We translate the old status
// strings for compatibility (though a newer version of Consul will still be
// required to use this API).
func (a *Agent) UpdateTTL(checkID, output, status string) error {
switch status {
case "pass", HealthPassing:
status = HealthPassing
case "warn", HealthWarning:
status = HealthWarning
case "fail", HealthCritical:
status = HealthCritical
default:
return fmt.Errorf("Invalid status: %s", status)
}
endpoint := fmt.Sprintf("/v1/agent/check/update/%s", checkID)
r := a.c.newRequest("PUT", endpoint)
r.obj = &checkUpdate{
Status: status,
Output: output,
}
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// CheckRegister is used to register a new check with
// the local agent
func (a *Agent) CheckRegister(check *AgentCheckRegistration) error {
r := a.c.newRequest("PUT", "/v1/agent/check/register")
r.obj = check
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// CheckDeregister is used to deregister a check with
// the local agent
func (a *Agent) CheckDeregister(checkID string) error {
r := a.c.newRequest("PUT", "/v1/agent/check/deregister/"+checkID)
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// Join is used to instruct the agent to attempt a join to
// another cluster member
func (a *Agent) Join(addr string, wan bool) error {
r := a.c.newRequest("PUT", "/v1/agent/join/"+addr)
if wan {
r.params.Set("wan", "1")
}
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// Leave is used to have the agent gracefully leave the cluster and shutdown
func (a *Agent) Leave() error {
r := a.c.newRequest("PUT", "/v1/agent/leave")
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// ForceLeave is used to have the agent eject a failed node
func (a *Agent) ForceLeave(node string) error {
r := a.c.newRequest("PUT", "/v1/agent/force-leave/"+node)
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// EnableServiceMaintenance toggles service maintenance mode on
// for the given service ID.
func (a *Agent) EnableServiceMaintenance(serviceID, reason string) error {
r := a.c.newRequest("PUT", "/v1/agent/service/maintenance/"+serviceID)
r.params.Set("enable", "true")
r.params.Set("reason", reason)
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// DisableServiceMaintenance toggles service maintenance mode off
// for the given service ID.
func (a *Agent) DisableServiceMaintenance(serviceID string) error {
r := a.c.newRequest("PUT", "/v1/agent/service/maintenance/"+serviceID)
r.params.Set("enable", "false")
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// EnableNodeMaintenance toggles node maintenance mode on for the
// agent we are connected to.
func (a *Agent) EnableNodeMaintenance(reason string) error {
r := a.c.newRequest("PUT", "/v1/agent/maintenance")
r.params.Set("enable", "true")
r.params.Set("reason", reason)
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// DisableNodeMaintenance toggles node maintenance mode off for the
// agent we are connected to.
func (a *Agent) DisableNodeMaintenance() error {
r := a.c.newRequest("PUT", "/v1/agent/maintenance")
r.params.Set("enable", "false")
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// Monitor returns a channel which will receive streaming logs from the agent
// Providing a non-nil stopCh can be used to close the connection and stop the
// log stream. An empty string will be sent down the given channel when there's
// nothing left to stream, after which the caller should close the stopCh.
func (a *Agent) Monitor(loglevel string, stopCh <-chan struct{}, q *QueryOptions) (chan string, error) {
r := a.c.newRequest("GET", "/v1/agent/monitor")
r.setQueryOptions(q)
if loglevel != "" {
r.params.Add("loglevel", loglevel)
}
_, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
logCh := make(chan string, 64)
go func() {
defer resp.Body.Close()
scanner := bufio.NewScanner(resp.Body)
for {
select {
case <-stopCh:
close(logCh)
return
default:
}
if scanner.Scan() {
// An empty string signals to the caller that
// the scan is done, so make sure we only emit
// that when the scanner says it's done, not if
// we happen to ingest an empty line.
if text := scanner.Text(); text != "" {
logCh <- text
} else {
logCh <- " "
}
} else {
logCh <- ""
}
}
}()
return logCh, nil
}
// UpdateACLToken updates the agent's "acl_token". See updateToken for more
// details.
func (a *Agent) UpdateACLToken(token string, q *WriteOptions) (*WriteMeta, error) {
return a.updateToken("acl_token", token, q)
}
// UpdateACLAgentToken updates the agent's "acl_agent_token". See updateToken
// for more details.
func (a *Agent) UpdateACLAgentToken(token string, q *WriteOptions) (*WriteMeta, error) {
return a.updateToken("acl_agent_token", token, q)
}
// UpdateACLAgentMasterToken updates the agent's "acl_agent_master_token". See
// updateToken for more details.
func (a *Agent) UpdateACLAgentMasterToken(token string, q *WriteOptions) (*WriteMeta, error) {
return a.updateToken("acl_agent_master_token", token, q)
}
// UpdateACLReplicationToken updates the agent's "acl_replication_token". See
// updateToken for more details.
func (a *Agent) UpdateACLReplicationToken(token string, q *WriteOptions) (*WriteMeta, error) {
return a.updateToken("acl_replication_token", token, q)
}
// updateToken can be used to update an agent's ACL token after the agent has
// started. The tokens are not persisted, so will need to be updated again if
// the agent is restarted.
func (a *Agent) updateToken(target, token string, q *WriteOptions) (*WriteMeta, error) {
r := a.c.newRequest("PUT", fmt.Sprintf("/v1/agent/token/%s", target))
r.setWriteOptions(q)
r.obj = &AgentToken{Token: token}
rtt, resp, err := requireOK(a.c.doRequest(r))
if err != nil {
return nil, err
}
resp.Body.Close()
wm := &WriteMeta{RequestTime: rtt}
return wm, nil
}

View file

@ -1,791 +0,0 @@
package api
import (
"bytes"
"context"
"crypto/tls"
"encoding/json"
"fmt"
"io"
"io/ioutil"
"log"
"net"
"net/http"
"net/url"
"os"
"strconv"
"strings"
"time"
"github.com/hashicorp/go-cleanhttp"
"github.com/hashicorp/go-rootcerts"
)
const (
// HTTPAddrEnvName defines an environment variable name which sets
// the HTTP address if there is no -http-addr specified.
HTTPAddrEnvName = "CONSUL_HTTP_ADDR"
// HTTPTokenEnvName defines an environment variable name which sets
// the HTTP token.
HTTPTokenEnvName = "CONSUL_HTTP_TOKEN"
// HTTPAuthEnvName defines an environment variable name which sets
// the HTTP authentication header.
HTTPAuthEnvName = "CONSUL_HTTP_AUTH"
// HTTPSSLEnvName defines an environment variable name which sets
// whether or not to use HTTPS.
HTTPSSLEnvName = "CONSUL_HTTP_SSL"
// HTTPCAFile defines an environment variable name which sets the
// CA file to use for talking to Consul over TLS.
HTTPCAFile = "CONSUL_CACERT"
// HTTPCAPath defines an environment variable name which sets the
// path to a directory of CA certs to use for talking to Consul over TLS.
HTTPCAPath = "CONSUL_CAPATH"
// HTTPClientCert defines an environment variable name which sets the
// client cert file to use for talking to Consul over TLS.
HTTPClientCert = "CONSUL_CLIENT_CERT"
// HTTPClientKey defines an environment variable name which sets the
// client key file to use for talking to Consul over TLS.
HTTPClientKey = "CONSUL_CLIENT_KEY"
// HTTPTLSServerName defines an environment variable name which sets the
// server name to use as the SNI host when connecting via TLS
HTTPTLSServerName = "CONSUL_TLS_SERVER_NAME"
// HTTPSSLVerifyEnvName defines an environment variable name which sets
// whether or not to disable certificate checking.
HTTPSSLVerifyEnvName = "CONSUL_HTTP_SSL_VERIFY"
)
// QueryOptions are used to parameterize a query
type QueryOptions struct {
// Providing a datacenter overwrites the DC provided
// by the Config
Datacenter string
// AllowStale allows any Consul server (non-leader) to service
// a read. This allows for lower latency and higher throughput
AllowStale bool
// RequireConsistent forces the read to be fully consistent.
// This is more expensive but prevents ever performing a stale
// read.
RequireConsistent bool
// WaitIndex is used to enable a blocking query. Waits
// until the timeout or the next index is reached
WaitIndex uint64
// WaitTime is used to bound the duration of a wait.
// Defaults to that of the Config, but can be overridden.
WaitTime time.Duration
// Token is used to provide a per-request ACL token
// which overrides the agent's default token.
Token string
// Near is used to provide a node name that will sort the results
// in ascending order based on the estimated round trip time from
// that node. Setting this to "_agent" will use the agent's node
// for the sort.
Near string
// NodeMeta is used to filter results by nodes with the given
// metadata key/value pairs. Currently, only one key/value pair can
// be provided for filtering.
NodeMeta map[string]string
// RelayFactor is used in keyring operations to cause reponses to be
// relayed back to the sender through N other random nodes. Must be
// a value from 0 to 5 (inclusive).
RelayFactor uint8
// ctx is an optional context pass through to the underlying HTTP
// request layer. Use Context() and WithContext() to manage this.
ctx context.Context
}
func (o *QueryOptions) Context() context.Context {
if o != nil && o.ctx != nil {
return o.ctx
}
return context.Background()
}
func (o *QueryOptions) WithContext(ctx context.Context) *QueryOptions {
o2 := new(QueryOptions)
if o != nil {
*o2 = *o
}
o2.ctx = ctx
return o2
}
// WriteOptions are used to parameterize a write
type WriteOptions struct {
// Providing a datacenter overwrites the DC provided
// by the Config
Datacenter string
// Token is used to provide a per-request ACL token
// which overrides the agent's default token.
Token string
// RelayFactor is used in keyring operations to cause reponses to be
// relayed back to the sender through N other random nodes. Must be
// a value from 0 to 5 (inclusive).
RelayFactor uint8
// ctx is an optional context pass through to the underlying HTTP
// request layer. Use Context() and WithContext() to manage this.
ctx context.Context
}
func (o *WriteOptions) Context() context.Context {
if o != nil && o.ctx != nil {
return o.ctx
}
return context.Background()
}
func (o *WriteOptions) WithContext(ctx context.Context) *WriteOptions {
o2 := new(WriteOptions)
if o != nil {
*o2 = *o
}
o2.ctx = ctx
return o2
}
// QueryMeta is used to return meta data about a query
type QueryMeta struct {
// LastIndex. This can be used as a WaitIndex to perform
// a blocking query
LastIndex uint64
// Time of last contact from the leader for the
// server servicing the request
LastContact time.Duration
// Is there a known leader
KnownLeader bool
// How long did the request take
RequestTime time.Duration
// Is address translation enabled for HTTP responses on this agent
AddressTranslationEnabled bool
}
// WriteMeta is used to return meta data about a write
type WriteMeta struct {
// How long did the request take
RequestTime time.Duration
}
// HttpBasicAuth is used to authenticate http client with HTTP Basic Authentication
type HttpBasicAuth struct {
// Username to use for HTTP Basic Authentication
Username string
// Password to use for HTTP Basic Authentication
Password string
}
// Config is used to configure the creation of a client
type Config struct {
// Address is the address of the Consul server
Address string
// Scheme is the URI scheme for the Consul server
Scheme string
// Datacenter to use. If not provided, the default agent datacenter is used.
Datacenter string
// Transport is the Transport to use for the http client.
Transport *http.Transport
// HttpClient is the client to use. Default will be
// used if not provided.
HttpClient *http.Client
// HttpAuth is the auth info to use for http access.
HttpAuth *HttpBasicAuth
// WaitTime limits how long a Watch will block. If not provided,
// the agent default values will be used.
WaitTime time.Duration
// Token is used to provide a per-request ACL token
// which overrides the agent's default token.
Token string
TLSConfig TLSConfig
}
// TLSConfig is used to generate a TLSClientConfig that's useful for talking to
// Consul using TLS.
type TLSConfig struct {
// Address is the optional address of the Consul server. The port, if any
// will be removed from here and this will be set to the ServerName of the
// resulting config.
Address string
// CAFile is the optional path to the CA certificate used for Consul
// communication, defaults to the system bundle if not specified.
CAFile string
// CAPath is the optional path to a directory of CA certificates to use for
// Consul communication, defaults to the system bundle if not specified.
CAPath string
// CertFile is the optional path to the certificate for Consul
// communication. If this is set then you need to also set KeyFile.
CertFile string
// KeyFile is the optional path to the private key for Consul communication.
// If this is set then you need to also set CertFile.
KeyFile string
// InsecureSkipVerify if set to true will disable TLS host verification.
InsecureSkipVerify bool
}
// DefaultConfig returns a default configuration for the client. By default this
// will pool and reuse idle connections to Consul. If you have a long-lived
// client object, this is the desired behavior and should make the most efficient
// use of the connections to Consul. If you don't reuse a client object , which
// is not recommended, then you may notice idle connections building up over
// time. To avoid this, use the DefaultNonPooledConfig() instead.
func DefaultConfig() *Config {
return defaultConfig(cleanhttp.DefaultPooledTransport)
}
// DefaultNonPooledConfig returns a default configuration for the client which
// does not pool connections. This isn't a recommended configuration because it
// will reconnect to Consul on every request, but this is useful to avoid the
// accumulation of idle connections if you make many client objects during the
// lifetime of your application.
func DefaultNonPooledConfig() *Config {
return defaultConfig(cleanhttp.DefaultTransport)
}
// defaultConfig returns the default configuration for the client, using the
// given function to make the transport.
func defaultConfig(transportFn func() *http.Transport) *Config {
config := &Config{
Address: "127.0.0.1:8500",
Scheme: "http",
Transport: transportFn(),
}
if addr := os.Getenv(HTTPAddrEnvName); addr != "" {
config.Address = addr
}
if token := os.Getenv(HTTPTokenEnvName); token != "" {
config.Token = token
}
if auth := os.Getenv(HTTPAuthEnvName); auth != "" {
var username, password string
if strings.Contains(auth, ":") {
split := strings.SplitN(auth, ":", 2)
username = split[0]
password = split[1]
} else {
username = auth
}
config.HttpAuth = &HttpBasicAuth{
Username: username,
Password: password,
}
}
if ssl := os.Getenv(HTTPSSLEnvName); ssl != "" {
enabled, err := strconv.ParseBool(ssl)
if err != nil {
log.Printf("[WARN] client: could not parse %s: %s", HTTPSSLEnvName, err)
}
if enabled {
config.Scheme = "https"
}
}
if v := os.Getenv(HTTPTLSServerName); v != "" {
config.TLSConfig.Address = v
}
if v := os.Getenv(HTTPCAFile); v != "" {
config.TLSConfig.CAFile = v
}
if v := os.Getenv(HTTPCAPath); v != "" {
config.TLSConfig.CAPath = v
}
if v := os.Getenv(HTTPClientCert); v != "" {
config.TLSConfig.CertFile = v
}
if v := os.Getenv(HTTPClientKey); v != "" {
config.TLSConfig.KeyFile = v
}
if v := os.Getenv(HTTPSSLVerifyEnvName); v != "" {
doVerify, err := strconv.ParseBool(v)
if err != nil {
log.Printf("[WARN] client: could not parse %s: %s", HTTPSSLVerifyEnvName, err)
}
if !doVerify {
config.TLSConfig.InsecureSkipVerify = true
}
}
return config
}
// TLSConfig is used to generate a TLSClientConfig that's useful for talking to
// Consul using TLS.
func SetupTLSConfig(tlsConfig *TLSConfig) (*tls.Config, error) {
tlsClientConfig := &tls.Config{
InsecureSkipVerify: tlsConfig.InsecureSkipVerify,
}
if tlsConfig.Address != "" {
server := tlsConfig.Address
hasPort := strings.LastIndex(server, ":") > strings.LastIndex(server, "]")
if hasPort {
var err error
server, _, err = net.SplitHostPort(server)
if err != nil {
return nil, err
}
}
tlsClientConfig.ServerName = server
}
if tlsConfig.CertFile != "" && tlsConfig.KeyFile != "" {
tlsCert, err := tls.LoadX509KeyPair(tlsConfig.CertFile, tlsConfig.KeyFile)
if err != nil {
return nil, err
}
tlsClientConfig.Certificates = []tls.Certificate{tlsCert}
}
if tlsConfig.CAFile != "" || tlsConfig.CAPath != "" {
rootConfig := &rootcerts.Config{
CAFile: tlsConfig.CAFile,
CAPath: tlsConfig.CAPath,
}
if err := rootcerts.ConfigureTLS(tlsClientConfig, rootConfig); err != nil {
return nil, err
}
}
return tlsClientConfig, nil
}
// Client provides a client to the Consul API
type Client struct {
config Config
}
// NewClient returns a new client
func NewClient(config *Config) (*Client, error) {
// bootstrap the config
defConfig := DefaultConfig()
if len(config.Address) == 0 {
config.Address = defConfig.Address
}
if len(config.Scheme) == 0 {
config.Scheme = defConfig.Scheme
}
if config.Transport == nil {
config.Transport = defConfig.Transport
}
if config.TLSConfig.Address == "" {
config.TLSConfig.Address = defConfig.TLSConfig.Address
}
if config.TLSConfig.CAFile == "" {
config.TLSConfig.CAFile = defConfig.TLSConfig.CAFile
}
if config.TLSConfig.CAPath == "" {
config.TLSConfig.CAPath = defConfig.TLSConfig.CAPath
}
if config.TLSConfig.CertFile == "" {
config.TLSConfig.CertFile = defConfig.TLSConfig.CertFile
}
if config.TLSConfig.KeyFile == "" {
config.TLSConfig.KeyFile = defConfig.TLSConfig.KeyFile
}
if !config.TLSConfig.InsecureSkipVerify {
config.TLSConfig.InsecureSkipVerify = defConfig.TLSConfig.InsecureSkipVerify
}
if config.HttpClient == nil {
var err error
config.HttpClient, err = NewHttpClient(config.Transport, config.TLSConfig)
if err != nil {
return nil, err
}
}
parts := strings.SplitN(config.Address, "://", 2)
if len(parts) == 2 {
switch parts[0] {
case "http":
config.Scheme = "http"
case "https":
config.Scheme = "https"
case "unix":
trans := cleanhttp.DefaultTransport()
trans.DialContext = func(_ context.Context, _, _ string) (net.Conn, error) {
return net.Dial("unix", parts[1])
}
config.HttpClient = &http.Client{
Transport: trans,
}
default:
return nil, fmt.Errorf("Unknown protocol scheme: %s", parts[0])
}
config.Address = parts[1]
}
if config.Token == "" {
config.Token = defConfig.Token
}
return &Client{config: *config}, nil
}
// NewHttpClient returns an http client configured with the given Transport and TLS
// config.
func NewHttpClient(transport *http.Transport, tlsConf TLSConfig) (*http.Client, error) {
client := &http.Client{
Transport: transport,
}
// TODO (slackpad) - Once we get some run time on the HTTP/2 support we
// should turn it on by default if TLS is enabled. We would basically
// just need to call http2.ConfigureTransport(transport) here. We also
// don't want to introduce another external dependency on
// golang.org/x/net/http2 at this time. For a complete recipe for how
// to enable HTTP/2 support on a transport suitable for the API client
// library see agent/http_test.go:TestHTTPServer_H2.
if transport.TLSClientConfig == nil {
tlsClientConfig, err := SetupTLSConfig(&tlsConf)
if err != nil {
return nil, err
}
transport.TLSClientConfig = tlsClientConfig
}
return client, nil
}
// request is used to help build up a request
type request struct {
config *Config
method string
url *url.URL
params url.Values
body io.Reader
header http.Header
obj interface{}
ctx context.Context
}
// setQueryOptions is used to annotate the request with
// additional query options
func (r *request) setQueryOptions(q *QueryOptions) {
if q == nil {
return
}
if q.Datacenter != "" {
r.params.Set("dc", q.Datacenter)
}
if q.AllowStale {
r.params.Set("stale", "")
}
if q.RequireConsistent {
r.params.Set("consistent", "")
}
if q.WaitIndex != 0 {
r.params.Set("index", strconv.FormatUint(q.WaitIndex, 10))
}
if q.WaitTime != 0 {
r.params.Set("wait", durToMsec(q.WaitTime))
}
if q.Token != "" {
r.header.Set("X-Consul-Token", q.Token)
}
if q.Near != "" {
r.params.Set("near", q.Near)
}
if len(q.NodeMeta) > 0 {
for key, value := range q.NodeMeta {
r.params.Add("node-meta", key+":"+value)
}
}
if q.RelayFactor != 0 {
r.params.Set("relay-factor", strconv.Itoa(int(q.RelayFactor)))
}
r.ctx = q.ctx
}
// durToMsec converts a duration to a millisecond specified string. If the
// user selected a positive value that rounds to 0 ms, then we will use 1 ms
// so they get a short delay, otherwise Consul will translate the 0 ms into
// a huge default delay.
func durToMsec(dur time.Duration) string {
ms := dur / time.Millisecond
if dur > 0 && ms == 0 {
ms = 1
}
return fmt.Sprintf("%dms", ms)
}
// serverError is a string we look for to detect 500 errors.
const serverError = "Unexpected response code: 500"
// IsRetryableError returns true for 500 errors from the Consul servers, and
// network connection errors. These are usually retryable at a later time.
// This applies to reads but NOT to writes. This may return true for errors
// on writes that may have still gone through, so do not use this to retry
// any write operations.
func IsRetryableError(err error) bool {
if err == nil {
return false
}
if _, ok := err.(net.Error); ok {
return true
}
// TODO (slackpad) - Make a real error type here instead of using
// a string check.
return strings.Contains(err.Error(), serverError)
}
// setWriteOptions is used to annotate the request with
// additional write options
func (r *request) setWriteOptions(q *WriteOptions) {
if q == nil {
return
}
if q.Datacenter != "" {
r.params.Set("dc", q.Datacenter)
}
if q.Token != "" {
r.header.Set("X-Consul-Token", q.Token)
}
if q.RelayFactor != 0 {
r.params.Set("relay-factor", strconv.Itoa(int(q.RelayFactor)))
}
r.ctx = q.ctx
}
// toHTTP converts the request to an HTTP request
func (r *request) toHTTP() (*http.Request, error) {
// Encode the query parameters
r.url.RawQuery = r.params.Encode()
// Check if we should encode the body
if r.body == nil && r.obj != nil {
b, err := encodeBody(r.obj)
if err != nil {
return nil, err
}
r.body = b
}
// Create the HTTP request
req, err := http.NewRequest(r.method, r.url.RequestURI(), r.body)
if err != nil {
return nil, err
}
req.URL.Host = r.url.Host
req.URL.Scheme = r.url.Scheme
req.Host = r.url.Host
req.Header = r.header
// Setup auth
if r.config.HttpAuth != nil {
req.SetBasicAuth(r.config.HttpAuth.Username, r.config.HttpAuth.Password)
}
if r.ctx != nil {
return req.WithContext(r.ctx), nil
}
return req, nil
}
// newRequest is used to create a new request
func (c *Client) newRequest(method, path string) *request {
r := &request{
config: &c.config,
method: method,
url: &url.URL{
Scheme: c.config.Scheme,
Host: c.config.Address,
Path: path,
},
params: make(map[string][]string),
header: make(http.Header),
}
if c.config.Datacenter != "" {
r.params.Set("dc", c.config.Datacenter)
}
if c.config.WaitTime != 0 {
r.params.Set("wait", durToMsec(r.config.WaitTime))
}
if c.config.Token != "" {
r.header.Set("X-Consul-Token", r.config.Token)
}
return r
}
// doRequest runs a request with our client
func (c *Client) doRequest(r *request) (time.Duration, *http.Response, error) {
req, err := r.toHTTP()
if err != nil {
return 0, nil, err
}
start := time.Now()
resp, err := c.config.HttpClient.Do(req)
diff := time.Since(start)
return diff, resp, err
}
// Query is used to do a GET request against an endpoint
// and deserialize the response into an interface using
// standard Consul conventions.
func (c *Client) query(endpoint string, out interface{}, q *QueryOptions) (*QueryMeta, error) {
r := c.newRequest("GET", endpoint)
r.setQueryOptions(q)
rtt, resp, err := requireOK(c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
if err := decodeBody(resp, out); err != nil {
return nil, err
}
return qm, nil
}
// write is used to do a PUT request against an endpoint
// and serialize/deserialized using the standard Consul conventions.
func (c *Client) write(endpoint string, in, out interface{}, q *WriteOptions) (*WriteMeta, error) {
r := c.newRequest("PUT", endpoint)
r.setWriteOptions(q)
r.obj = in
rtt, resp, err := requireOK(c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{RequestTime: rtt}
if out != nil {
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
} else if _, err := ioutil.ReadAll(resp.Body); err != nil {
return nil, err
}
return wm, nil
}
// parseQueryMeta is used to help parse query meta-data
func parseQueryMeta(resp *http.Response, q *QueryMeta) error {
header := resp.Header
// Parse the X-Consul-Index
index, err := strconv.ParseUint(header.Get("X-Consul-Index"), 10, 64)
if err != nil {
return fmt.Errorf("Failed to parse X-Consul-Index: %v", err)
}
q.LastIndex = index
// Parse the X-Consul-LastContact
last, err := strconv.ParseUint(header.Get("X-Consul-LastContact"), 10, 64)
if err != nil {
return fmt.Errorf("Failed to parse X-Consul-LastContact: %v", err)
}
q.LastContact = time.Duration(last) * time.Millisecond
// Parse the X-Consul-KnownLeader
switch header.Get("X-Consul-KnownLeader") {
case "true":
q.KnownLeader = true
default:
q.KnownLeader = false
}
// Parse X-Consul-Translate-Addresses
switch header.Get("X-Consul-Translate-Addresses") {
case "true":
q.AddressTranslationEnabled = true
default:
q.AddressTranslationEnabled = false
}
return nil
}
// decodeBody is used to JSON decode a body
func decodeBody(resp *http.Response, out interface{}) error {
dec := json.NewDecoder(resp.Body)
return dec.Decode(out)
}
// encodeBody is used to encode a request body
func encodeBody(obj interface{}) (io.Reader, error) {
buf := bytes.NewBuffer(nil)
enc := json.NewEncoder(buf)
if err := enc.Encode(obj); err != nil {
return nil, err
}
return buf, nil
}
// requireOK is used to wrap doRequest and check for a 200
func requireOK(d time.Duration, resp *http.Response, e error) (time.Duration, *http.Response, error) {
if e != nil {
if resp != nil {
resp.Body.Close()
}
return d, nil, e
}
if resp.StatusCode != 200 {
var buf bytes.Buffer
io.Copy(&buf, resp.Body)
resp.Body.Close()
return d, nil, fmt.Errorf("Unexpected response code: %d (%s)", resp.StatusCode, buf.Bytes())
}
return d, resp, nil
}

View file

@ -1,199 +0,0 @@
package api
type Node struct {
ID string
Node string
Address string
Datacenter string
TaggedAddresses map[string]string
Meta map[string]string
CreateIndex uint64
ModifyIndex uint64
}
type CatalogService struct {
ID string
Node string
Address string
Datacenter string
TaggedAddresses map[string]string
NodeMeta map[string]string
ServiceID string
ServiceName string
ServiceAddress string
ServiceTags []string
ServicePort int
ServiceEnableTagOverride bool
CreateIndex uint64
ModifyIndex uint64
}
type CatalogNode struct {
Node *Node
Services map[string]*AgentService
}
type CatalogRegistration struct {
ID string
Node string
Address string
TaggedAddresses map[string]string
NodeMeta map[string]string
Datacenter string
Service *AgentService
Check *AgentCheck
SkipNodeUpdate bool
}
type CatalogDeregistration struct {
Node string
Address string // Obsolete.
Datacenter string
ServiceID string
CheckID string
}
// Catalog can be used to query the Catalog endpoints
type Catalog struct {
c *Client
}
// Catalog returns a handle to the catalog endpoints
func (c *Client) Catalog() *Catalog {
return &Catalog{c}
}
func (c *Catalog) Register(reg *CatalogRegistration, q *WriteOptions) (*WriteMeta, error) {
r := c.c.newRequest("PUT", "/v1/catalog/register")
r.setWriteOptions(q)
r.obj = reg
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, err
}
resp.Body.Close()
wm := &WriteMeta{}
wm.RequestTime = rtt
return wm, nil
}
func (c *Catalog) Deregister(dereg *CatalogDeregistration, q *WriteOptions) (*WriteMeta, error) {
r := c.c.newRequest("PUT", "/v1/catalog/deregister")
r.setWriteOptions(q)
r.obj = dereg
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, err
}
resp.Body.Close()
wm := &WriteMeta{}
wm.RequestTime = rtt
return wm, nil
}
// Datacenters is used to query for all the known datacenters
func (c *Catalog) Datacenters() ([]string, error) {
r := c.c.newRequest("GET", "/v1/catalog/datacenters")
_, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out []string
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return out, nil
}
// Nodes is used to query all the known nodes
func (c *Catalog) Nodes(q *QueryOptions) ([]*Node, *QueryMeta, error) {
r := c.c.newRequest("GET", "/v1/catalog/nodes")
r.setQueryOptions(q)
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out []*Node
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}
// Services is used to query for all known services
func (c *Catalog) Services(q *QueryOptions) (map[string][]string, *QueryMeta, error) {
r := c.c.newRequest("GET", "/v1/catalog/services")
r.setQueryOptions(q)
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out map[string][]string
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}
// Service is used to query catalog entries for a given service
func (c *Catalog) Service(service, tag string, q *QueryOptions) ([]*CatalogService, *QueryMeta, error) {
r := c.c.newRequest("GET", "/v1/catalog/service/"+service)
r.setQueryOptions(q)
if tag != "" {
r.params.Set("tag", tag)
}
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out []*CatalogService
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}
// Node is used to query for service information about a single node
func (c *Catalog) Node(node string, q *QueryOptions) (*CatalogNode, *QueryMeta, error) {
r := c.c.newRequest("GET", "/v1/catalog/node/"+node)
r.setQueryOptions(q)
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out *CatalogNode
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}

View file

@ -1,106 +0,0 @@
package api
import (
"github.com/hashicorp/serf/coordinate"
)
// CoordinateEntry represents a node and its associated network coordinate.
type CoordinateEntry struct {
Node string
Segment string
Coord *coordinate.Coordinate
}
// CoordinateDatacenterMap has the coordinates for servers in a given datacenter
// and area. Network coordinates are only compatible within the same area.
type CoordinateDatacenterMap struct {
Datacenter string
AreaID string
Coordinates []CoordinateEntry
}
// Coordinate can be used to query the coordinate endpoints
type Coordinate struct {
c *Client
}
// Coordinate returns a handle to the coordinate endpoints
func (c *Client) Coordinate() *Coordinate {
return &Coordinate{c}
}
// Datacenters is used to return the coordinates of all the servers in the WAN
// pool.
func (c *Coordinate) Datacenters() ([]*CoordinateDatacenterMap, error) {
r := c.c.newRequest("GET", "/v1/coordinate/datacenters")
_, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out []*CoordinateDatacenterMap
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return out, nil
}
// Nodes is used to return the coordinates of all the nodes in the LAN pool.
func (c *Coordinate) Nodes(q *QueryOptions) ([]*CoordinateEntry, *QueryMeta, error) {
r := c.c.newRequest("GET", "/v1/coordinate/nodes")
r.setQueryOptions(q)
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out []*CoordinateEntry
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}
// Update inserts or updates the LAN coordinate of a node.
func (c *Coordinate) Update(coord *CoordinateEntry, q *WriteOptions) (*WriteMeta, error) {
r := c.c.newRequest("PUT", "/v1/coordinate/update")
r.setWriteOptions(q)
r.obj = coord
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{}
wm.RequestTime = rtt
return wm, nil
}
// Node is used to return the coordinates of a single in the LAN pool.
func (c *Coordinate) Node(node string, q *QueryOptions) ([]*CoordinateEntry, *QueryMeta, error) {
r := c.c.newRequest("GET", "/v1/coordinate/node/"+node)
r.setQueryOptions(q)
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out []*CoordinateEntry
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}

View file

@ -1,104 +0,0 @@
package api
import (
"bytes"
"strconv"
)
// Event can be used to query the Event endpoints
type Event struct {
c *Client
}
// UserEvent represents an event that was fired by the user
type UserEvent struct {
ID string
Name string
Payload []byte
NodeFilter string
ServiceFilter string
TagFilter string
Version int
LTime uint64
}
// Event returns a handle to the event endpoints
func (c *Client) Event() *Event {
return &Event{c}
}
// Fire is used to fire a new user event. Only the Name, Payload and Filters
// are respected. This returns the ID or an associated error. Cross DC requests
// are supported.
func (e *Event) Fire(params *UserEvent, q *WriteOptions) (string, *WriteMeta, error) {
r := e.c.newRequest("PUT", "/v1/event/fire/"+params.Name)
r.setWriteOptions(q)
if params.NodeFilter != "" {
r.params.Set("node", params.NodeFilter)
}
if params.ServiceFilter != "" {
r.params.Set("service", params.ServiceFilter)
}
if params.TagFilter != "" {
r.params.Set("tag", params.TagFilter)
}
if params.Payload != nil {
r.body = bytes.NewReader(params.Payload)
}
rtt, resp, err := requireOK(e.c.doRequest(r))
if err != nil {
return "", nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{RequestTime: rtt}
var out UserEvent
if err := decodeBody(resp, &out); err != nil {
return "", nil, err
}
return out.ID, wm, nil
}
// List is used to get the most recent events an agent has received.
// This list can be optionally filtered by the name. This endpoint supports
// quasi-blocking queries. The index is not monotonic, nor does it provide provide
// LastContact or KnownLeader.
func (e *Event) List(name string, q *QueryOptions) ([]*UserEvent, *QueryMeta, error) {
r := e.c.newRequest("GET", "/v1/event/list")
r.setQueryOptions(q)
if name != "" {
r.params.Set("name", name)
}
rtt, resp, err := requireOK(e.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var entries []*UserEvent
if err := decodeBody(resp, &entries); err != nil {
return nil, nil, err
}
return entries, qm, nil
}
// IDToIndex is a bit of a hack. This simulates the index generation to
// convert an event ID into a WaitIndex.
func (e *Event) IDToIndex(uuid string) uint64 {
lower := uuid[0:8] + uuid[9:13] + uuid[14:18]
upper := uuid[19:23] + uuid[24:36]
lowVal, err := strconv.ParseUint(lower, 16, 64)
if err != nil {
panic("Failed to convert " + lower)
}
highVal, err := strconv.ParseUint(upper, 16, 64)
if err != nil {
panic("Failed to convert " + upper)
}
return lowVal ^ highVal
}

View file

@ -1,215 +0,0 @@
package api
import (
"fmt"
"strings"
)
const (
// HealthAny is special, and is used as a wild card,
// not as a specific state.
HealthAny = "any"
HealthPassing = "passing"
HealthWarning = "warning"
HealthCritical = "critical"
HealthMaint = "maintenance"
)
const (
// NodeMaint is the special key set by a node in maintenance mode.
NodeMaint = "_node_maintenance"
// ServiceMaintPrefix is the prefix for a service in maintenance mode.
ServiceMaintPrefix = "_service_maintenance:"
)
// HealthCheck is used to represent a single check
type HealthCheck struct {
Node string
CheckID string
Name string
Status string
Notes string
Output string
ServiceID string
ServiceName string
ServiceTags []string
Definition HealthCheckDefinition
}
// HealthCheckDefinition is used to store the details about
// a health check's execution.
type HealthCheckDefinition struct {
HTTP string
Header map[string][]string
Method string
TLSSkipVerify bool
TCP string
Interval ReadableDuration
Timeout ReadableDuration
DeregisterCriticalServiceAfter ReadableDuration
}
// HealthChecks is a collection of HealthCheck structs.
type HealthChecks []*HealthCheck
// AggregatedStatus returns the "best" status for the list of health checks.
// Because a given entry may have many service and node-level health checks
// attached, this function determines the best representative of the status as
// as single string using the following heuristic:
//
// maintenance > critical > warning > passing
//
func (c HealthChecks) AggregatedStatus() string {
var passing, warning, critical, maintenance bool
for _, check := range c {
id := string(check.CheckID)
if id == NodeMaint || strings.HasPrefix(id, ServiceMaintPrefix) {
maintenance = true
continue
}
switch check.Status {
case HealthPassing:
passing = true
case HealthWarning:
warning = true
case HealthCritical:
critical = true
default:
return ""
}
}
switch {
case maintenance:
return HealthMaint
case critical:
return HealthCritical
case warning:
return HealthWarning
case passing:
return HealthPassing
default:
return HealthPassing
}
}
// ServiceEntry is used for the health service endpoint
type ServiceEntry struct {
Node *Node
Service *AgentService
Checks HealthChecks
}
// Health can be used to query the Health endpoints
type Health struct {
c *Client
}
// Health returns a handle to the health endpoints
func (c *Client) Health() *Health {
return &Health{c}
}
// Node is used to query for checks belonging to a given node
func (h *Health) Node(node string, q *QueryOptions) (HealthChecks, *QueryMeta, error) {
r := h.c.newRequest("GET", "/v1/health/node/"+node)
r.setQueryOptions(q)
rtt, resp, err := requireOK(h.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out HealthChecks
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}
// Checks is used to return the checks associated with a service
func (h *Health) Checks(service string, q *QueryOptions) (HealthChecks, *QueryMeta, error) {
r := h.c.newRequest("GET", "/v1/health/checks/"+service)
r.setQueryOptions(q)
rtt, resp, err := requireOK(h.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out HealthChecks
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}
// Service is used to query health information along with service info
// for a given service. It can optionally do server-side filtering on a tag
// or nodes with passing health checks only.
func (h *Health) Service(service, tag string, passingOnly bool, q *QueryOptions) ([]*ServiceEntry, *QueryMeta, error) {
r := h.c.newRequest("GET", "/v1/health/service/"+service)
r.setQueryOptions(q)
if tag != "" {
r.params.Set("tag", tag)
}
if passingOnly {
r.params.Set(HealthPassing, "1")
}
rtt, resp, err := requireOK(h.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out []*ServiceEntry
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}
// State is used to retrieve all the checks in a given state.
// The wildcard "any" state can also be used for all checks.
func (h *Health) State(state string, q *QueryOptions) (HealthChecks, *QueryMeta, error) {
switch state {
case HealthAny:
case HealthWarning:
case HealthCritical:
case HealthPassing:
default:
return nil, nil, fmt.Errorf("Unsupported state: %v", state)
}
r := h.c.newRequest("GET", "/v1/health/state/"+state)
r.setQueryOptions(q)
rtt, resp, err := requireOK(h.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
var out HealthChecks
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, qm, nil
}

View file

@ -1,420 +0,0 @@
package api
import (
"bytes"
"fmt"
"io"
"net/http"
"strconv"
"strings"
)
// KVPair is used to represent a single K/V entry
type KVPair struct {
// Key is the name of the key. It is also part of the URL path when accessed
// via the API.
Key string
// CreateIndex holds the index corresponding the creation of this KVPair. This
// is a read-only field.
CreateIndex uint64
// ModifyIndex is used for the Check-And-Set operations and can also be fed
// back into the WaitIndex of the QueryOptions in order to perform blocking
// queries.
ModifyIndex uint64
// LockIndex holds the index corresponding to a lock on this key, if any. This
// is a read-only field.
LockIndex uint64
// Flags are any user-defined flags on the key. It is up to the implementer
// to check these values, since Consul does not treat them specially.
Flags uint64
// Value is the value for the key. This can be any value, but it will be
// base64 encoded upon transport.
Value []byte
// Session is a string representing the ID of the session. Any other
// interactions with this key over the same session must specify the same
// session ID.
Session string
}
// KVPairs is a list of KVPair objects
type KVPairs []*KVPair
// KVOp constants give possible operations available in a KVTxn.
type KVOp string
const (
KVSet KVOp = "set"
KVDelete KVOp = "delete"
KVDeleteCAS KVOp = "delete-cas"
KVDeleteTree KVOp = "delete-tree"
KVCAS KVOp = "cas"
KVLock KVOp = "lock"
KVUnlock KVOp = "unlock"
KVGet KVOp = "get"
KVGetTree KVOp = "get-tree"
KVCheckSession KVOp = "check-session"
KVCheckIndex KVOp = "check-index"
KVCheckNotExists KVOp = "check-not-exists"
)
// KVTxnOp defines a single operation inside a transaction.
type KVTxnOp struct {
Verb KVOp
Key string
Value []byte
Flags uint64
Index uint64
Session string
}
// KVTxnOps defines a set of operations to be performed inside a single
// transaction.
type KVTxnOps []*KVTxnOp
// KVTxnResponse has the outcome of a transaction.
type KVTxnResponse struct {
Results []*KVPair
Errors TxnErrors
}
// KV is used to manipulate the K/V API
type KV struct {
c *Client
}
// KV is used to return a handle to the K/V apis
func (c *Client) KV() *KV {
return &KV{c}
}
// Get is used to lookup a single key. The returned pointer
// to the KVPair will be nil if the key does not exist.
func (k *KV) Get(key string, q *QueryOptions) (*KVPair, *QueryMeta, error) {
resp, qm, err := k.getInternal(key, nil, q)
if err != nil {
return nil, nil, err
}
if resp == nil {
return nil, qm, nil
}
defer resp.Body.Close()
var entries []*KVPair
if err := decodeBody(resp, &entries); err != nil {
return nil, nil, err
}
if len(entries) > 0 {
return entries[0], qm, nil
}
return nil, qm, nil
}
// List is used to lookup all keys under a prefix
func (k *KV) List(prefix string, q *QueryOptions) (KVPairs, *QueryMeta, error) {
resp, qm, err := k.getInternal(prefix, map[string]string{"recurse": ""}, q)
if err != nil {
return nil, nil, err
}
if resp == nil {
return nil, qm, nil
}
defer resp.Body.Close()
var entries []*KVPair
if err := decodeBody(resp, &entries); err != nil {
return nil, nil, err
}
return entries, qm, nil
}
// Keys is used to list all the keys under a prefix. Optionally,
// a separator can be used to limit the responses.
func (k *KV) Keys(prefix, separator string, q *QueryOptions) ([]string, *QueryMeta, error) {
params := map[string]string{"keys": ""}
if separator != "" {
params["separator"] = separator
}
resp, qm, err := k.getInternal(prefix, params, q)
if err != nil {
return nil, nil, err
}
if resp == nil {
return nil, qm, nil
}
defer resp.Body.Close()
var entries []string
if err := decodeBody(resp, &entries); err != nil {
return nil, nil, err
}
return entries, qm, nil
}
func (k *KV) getInternal(key string, params map[string]string, q *QueryOptions) (*http.Response, *QueryMeta, error) {
r := k.c.newRequest("GET", "/v1/kv/"+strings.TrimPrefix(key, "/"))
r.setQueryOptions(q)
for param, val := range params {
r.params.Set(param, val)
}
rtt, resp, err := k.c.doRequest(r)
if err != nil {
return nil, nil, err
}
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
if resp.StatusCode == 404 {
resp.Body.Close()
return nil, qm, nil
} else if resp.StatusCode != 200 {
resp.Body.Close()
return nil, nil, fmt.Errorf("Unexpected response code: %d", resp.StatusCode)
}
return resp, qm, nil
}
// Put is used to write a new value. Only the
// Key, Flags and Value is respected.
func (k *KV) Put(p *KVPair, q *WriteOptions) (*WriteMeta, error) {
params := make(map[string]string, 1)
if p.Flags != 0 {
params["flags"] = strconv.FormatUint(p.Flags, 10)
}
_, wm, err := k.put(p.Key, params, p.Value, q)
return wm, err
}
// CAS is used for a Check-And-Set operation. The Key,
// ModifyIndex, Flags and Value are respected. Returns true
// on success or false on failures.
func (k *KV) CAS(p *KVPair, q *WriteOptions) (bool, *WriteMeta, error) {
params := make(map[string]string, 2)
if p.Flags != 0 {
params["flags"] = strconv.FormatUint(p.Flags, 10)
}
params["cas"] = strconv.FormatUint(p.ModifyIndex, 10)
return k.put(p.Key, params, p.Value, q)
}
// Acquire is used for a lock acquisition operation. The Key,
// Flags, Value and Session are respected. Returns true
// on success or false on failures.
func (k *KV) Acquire(p *KVPair, q *WriteOptions) (bool, *WriteMeta, error) {
params := make(map[string]string, 2)
if p.Flags != 0 {
params["flags"] = strconv.FormatUint(p.Flags, 10)
}
params["acquire"] = p.Session
return k.put(p.Key, params, p.Value, q)
}
// Release is used for a lock release operation. The Key,
// Flags, Value and Session are respected. Returns true
// on success or false on failures.
func (k *KV) Release(p *KVPair, q *WriteOptions) (bool, *WriteMeta, error) {
params := make(map[string]string, 2)
if p.Flags != 0 {
params["flags"] = strconv.FormatUint(p.Flags, 10)
}
params["release"] = p.Session
return k.put(p.Key, params, p.Value, q)
}
func (k *KV) put(key string, params map[string]string, body []byte, q *WriteOptions) (bool, *WriteMeta, error) {
if len(key) > 0 && key[0] == '/' {
return false, nil, fmt.Errorf("Invalid key. Key must not begin with a '/': %s", key)
}
r := k.c.newRequest("PUT", "/v1/kv/"+key)
r.setWriteOptions(q)
for param, val := range params {
r.params.Set(param, val)
}
r.body = bytes.NewReader(body)
rtt, resp, err := requireOK(k.c.doRequest(r))
if err != nil {
return false, nil, err
}
defer resp.Body.Close()
qm := &WriteMeta{}
qm.RequestTime = rtt
var buf bytes.Buffer
if _, err := io.Copy(&buf, resp.Body); err != nil {
return false, nil, fmt.Errorf("Failed to read response: %v", err)
}
res := strings.Contains(buf.String(), "true")
return res, qm, nil
}
// Delete is used to delete a single key
func (k *KV) Delete(key string, w *WriteOptions) (*WriteMeta, error) {
_, qm, err := k.deleteInternal(key, nil, w)
return qm, err
}
// DeleteCAS is used for a Delete Check-And-Set operation. The Key
// and ModifyIndex are respected. Returns true on success or false on failures.
func (k *KV) DeleteCAS(p *KVPair, q *WriteOptions) (bool, *WriteMeta, error) {
params := map[string]string{
"cas": strconv.FormatUint(p.ModifyIndex, 10),
}
return k.deleteInternal(p.Key, params, q)
}
// DeleteTree is used to delete all keys under a prefix
func (k *KV) DeleteTree(prefix string, w *WriteOptions) (*WriteMeta, error) {
_, qm, err := k.deleteInternal(prefix, map[string]string{"recurse": ""}, w)
return qm, err
}
func (k *KV) deleteInternal(key string, params map[string]string, q *WriteOptions) (bool, *WriteMeta, error) {
r := k.c.newRequest("DELETE", "/v1/kv/"+strings.TrimPrefix(key, "/"))
r.setWriteOptions(q)
for param, val := range params {
r.params.Set(param, val)
}
rtt, resp, err := requireOK(k.c.doRequest(r))
if err != nil {
return false, nil, err
}
defer resp.Body.Close()
qm := &WriteMeta{}
qm.RequestTime = rtt
var buf bytes.Buffer
if _, err := io.Copy(&buf, resp.Body); err != nil {
return false, nil, fmt.Errorf("Failed to read response: %v", err)
}
res := strings.Contains(buf.String(), "true")
return res, qm, nil
}
// TxnOp is the internal format we send to Consul. It's not specific to KV,
// though currently only KV operations are supported.
type TxnOp struct {
KV *KVTxnOp
}
// TxnOps is a list of transaction operations.
type TxnOps []*TxnOp
// TxnResult is the internal format we receive from Consul.
type TxnResult struct {
KV *KVPair
}
// TxnResults is a list of TxnResult objects.
type TxnResults []*TxnResult
// TxnError is used to return information about an operation in a transaction.
type TxnError struct {
OpIndex int
What string
}
// TxnErrors is a list of TxnError objects.
type TxnErrors []*TxnError
// TxnResponse is the internal format we receive from Consul.
type TxnResponse struct {
Results TxnResults
Errors TxnErrors
}
// Txn is used to apply multiple KV operations in a single, atomic transaction.
//
// Note that Go will perform the required base64 encoding on the values
// automatically because the type is a byte slice. Transactions are defined as a
// list of operations to perform, using the KVOp constants and KVTxnOp structure
// to define operations. If any operation fails, none of the changes are applied
// to the state store. Note that this hides the internal raw transaction interface
// and munges the input and output types into KV-specific ones for ease of use.
// If there are more non-KV operations in the future we may break out a new
// transaction API client, but it will be easy to keep this KV-specific variant
// supported.
//
// Even though this is generally a write operation, we take a QueryOptions input
// and return a QueryMeta output. If the transaction contains only read ops, then
// Consul will fast-path it to a different endpoint internally which supports
// consistency controls, but not blocking. If there are write operations then
// the request will always be routed through raft and any consistency settings
// will be ignored.
//
// Here's an example:
//
// ops := KVTxnOps{
// &KVTxnOp{
// Verb: KVLock,
// Key: "test/lock",
// Session: "adf4238a-882b-9ddc-4a9d-5b6758e4159e",
// Value: []byte("hello"),
// },
// &KVTxnOp{
// Verb: KVGet,
// Key: "another/key",
// },
// }
// ok, response, _, err := kv.Txn(&ops, nil)
//
// If there is a problem making the transaction request then an error will be
// returned. Otherwise, the ok value will be true if the transaction succeeded
// or false if it was rolled back. The response is a structured return value which
// will have the outcome of the transaction. Its Results member will have entries
// for each operation. Deleted keys will have a nil entry in the, and to save
// space, the Value of each key in the Results will be nil unless the operation
// is a KVGet. If the transaction was rolled back, the Errors member will have
// entries referencing the index of the operation that failed along with an error
// message.
func (k *KV) Txn(txn KVTxnOps, q *QueryOptions) (bool, *KVTxnResponse, *QueryMeta, error) {
r := k.c.newRequest("PUT", "/v1/txn")
r.setQueryOptions(q)
// Convert into the internal format since this is an all-KV txn.
ops := make(TxnOps, 0, len(txn))
for _, kvOp := range txn {
ops = append(ops, &TxnOp{KV: kvOp})
}
r.obj = ops
rtt, resp, err := k.c.doRequest(r)
if err != nil {
return false, nil, nil, err
}
defer resp.Body.Close()
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
if resp.StatusCode == http.StatusOK || resp.StatusCode == http.StatusConflict {
var txnResp TxnResponse
if err := decodeBody(resp, &txnResp); err != nil {
return false, nil, nil, err
}
// Convert from the internal format.
kvResp := KVTxnResponse{
Errors: txnResp.Errors,
}
for _, result := range txnResp.Results {
kvResp.Results = append(kvResp.Results, result.KV)
}
return resp.StatusCode == http.StatusOK, &kvResp, qm, nil
}
var buf bytes.Buffer
if _, err := io.Copy(&buf, resp.Body); err != nil {
return false, nil, nil, fmt.Errorf("Failed to read response: %v", err)
}
return false, nil, nil, fmt.Errorf("Failed request: %s", buf.String())
}

View file

@ -1,385 +0,0 @@
package api
import (
"fmt"
"sync"
"time"
)
const (
// DefaultLockSessionName is the Session Name we assign if none is provided
DefaultLockSessionName = "Consul API Lock"
// DefaultLockSessionTTL is the default session TTL if no Session is provided
// when creating a new Lock. This is used because we do not have another
// other check to depend upon.
DefaultLockSessionTTL = "15s"
// DefaultLockWaitTime is how long we block for at a time to check if lock
// acquisition is possible. This affects the minimum time it takes to cancel
// a Lock acquisition.
DefaultLockWaitTime = 15 * time.Second
// DefaultLockRetryTime is how long we wait after a failed lock acquisition
// before attempting to do the lock again. This is so that once a lock-delay
// is in effect, we do not hot loop retrying the acquisition.
DefaultLockRetryTime = 5 * time.Second
// DefaultMonitorRetryTime is how long we wait after a failed monitor check
// of a lock (500 response code). This allows the monitor to ride out brief
// periods of unavailability, subject to the MonitorRetries setting in the
// lock options which is by default set to 0, disabling this feature. This
// affects locks and semaphores.
DefaultMonitorRetryTime = 2 * time.Second
// LockFlagValue is a magic flag we set to indicate a key
// is being used for a lock. It is used to detect a potential
// conflict with a semaphore.
LockFlagValue = 0x2ddccbc058a50c18
)
var (
// ErrLockHeld is returned if we attempt to double lock
ErrLockHeld = fmt.Errorf("Lock already held")
// ErrLockNotHeld is returned if we attempt to unlock a lock
// that we do not hold.
ErrLockNotHeld = fmt.Errorf("Lock not held")
// ErrLockInUse is returned if we attempt to destroy a lock
// that is in use.
ErrLockInUse = fmt.Errorf("Lock in use")
// ErrLockConflict is returned if the flags on a key
// used for a lock do not match expectation
ErrLockConflict = fmt.Errorf("Existing key does not match lock use")
)
// Lock is used to implement client-side leader election. It is follows the
// algorithm as described here: https://www.consul.io/docs/guides/leader-election.html.
type Lock struct {
c *Client
opts *LockOptions
isHeld bool
sessionRenew chan struct{}
lockSession string
l sync.Mutex
}
// LockOptions is used to parameterize the Lock behavior.
type LockOptions struct {
Key string // Must be set and have write permissions
Value []byte // Optional, value to associate with the lock
Session string // Optional, created if not specified
SessionOpts *SessionEntry // Optional, options to use when creating a session
SessionName string // Optional, defaults to DefaultLockSessionName (ignored if SessionOpts is given)
SessionTTL string // Optional, defaults to DefaultLockSessionTTL (ignored if SessionOpts is given)
MonitorRetries int // Optional, defaults to 0 which means no retries
MonitorRetryTime time.Duration // Optional, defaults to DefaultMonitorRetryTime
LockWaitTime time.Duration // Optional, defaults to DefaultLockWaitTime
LockTryOnce bool // Optional, defaults to false which means try forever
}
// LockKey returns a handle to a lock struct which can be used
// to acquire and release the mutex. The key used must have
// write permissions.
func (c *Client) LockKey(key string) (*Lock, error) {
opts := &LockOptions{
Key: key,
}
return c.LockOpts(opts)
}
// LockOpts returns a handle to a lock struct which can be used
// to acquire and release the mutex. The key used must have
// write permissions.
func (c *Client) LockOpts(opts *LockOptions) (*Lock, error) {
if opts.Key == "" {
return nil, fmt.Errorf("missing key")
}
if opts.SessionName == "" {
opts.SessionName = DefaultLockSessionName
}
if opts.SessionTTL == "" {
opts.SessionTTL = DefaultLockSessionTTL
} else {
if _, err := time.ParseDuration(opts.SessionTTL); err != nil {
return nil, fmt.Errorf("invalid SessionTTL: %v", err)
}
}
if opts.MonitorRetryTime == 0 {
opts.MonitorRetryTime = DefaultMonitorRetryTime
}
if opts.LockWaitTime == 0 {
opts.LockWaitTime = DefaultLockWaitTime
}
l := &Lock{
c: c,
opts: opts,
}
return l, nil
}
// Lock attempts to acquire the lock and blocks while doing so.
// Providing a non-nil stopCh can be used to abort the lock attempt.
// Returns a channel that is closed if our lock is lost or an error.
// This channel could be closed at any time due to session invalidation,
// communication errors, operator intervention, etc. It is NOT safe to
// assume that the lock is held until Unlock() unless the Session is specifically
// created without any associated health checks. By default Consul sessions
// prefer liveness over safety and an application must be able to handle
// the lock being lost.
func (l *Lock) Lock(stopCh <-chan struct{}) (<-chan struct{}, error) {
// Hold the lock as we try to acquire
l.l.Lock()
defer l.l.Unlock()
// Check if we already hold the lock
if l.isHeld {
return nil, ErrLockHeld
}
// Check if we need to create a session first
l.lockSession = l.opts.Session
if l.lockSession == "" {
s, err := l.createSession()
if err != nil {
return nil, fmt.Errorf("failed to create session: %v", err)
}
l.sessionRenew = make(chan struct{})
l.lockSession = s
session := l.c.Session()
go session.RenewPeriodic(l.opts.SessionTTL, s, nil, l.sessionRenew)
// If we fail to acquire the lock, cleanup the session
defer func() {
if !l.isHeld {
close(l.sessionRenew)
l.sessionRenew = nil
}
}()
}
// Setup the query options
kv := l.c.KV()
qOpts := &QueryOptions{
WaitTime: l.opts.LockWaitTime,
}
start := time.Now()
attempts := 0
WAIT:
// Check if we should quit
select {
case <-stopCh:
return nil, nil
default:
}
// Handle the one-shot mode.
if l.opts.LockTryOnce && attempts > 0 {
elapsed := time.Since(start)
if elapsed > qOpts.WaitTime {
return nil, nil
}
qOpts.WaitTime -= elapsed
}
attempts++
// Look for an existing lock, blocking until not taken
pair, meta, err := kv.Get(l.opts.Key, qOpts)
if err != nil {
return nil, fmt.Errorf("failed to read lock: %v", err)
}
if pair != nil && pair.Flags != LockFlagValue {
return nil, ErrLockConflict
}
locked := false
if pair != nil && pair.Session == l.lockSession {
goto HELD
}
if pair != nil && pair.Session != "" {
qOpts.WaitIndex = meta.LastIndex
goto WAIT
}
// Try to acquire the lock
pair = l.lockEntry(l.lockSession)
locked, _, err = kv.Acquire(pair, nil)
if err != nil {
return nil, fmt.Errorf("failed to acquire lock: %v", err)
}
// Handle the case of not getting the lock
if !locked {
// Determine why the lock failed
qOpts.WaitIndex = 0
pair, meta, err = kv.Get(l.opts.Key, qOpts)
if pair != nil && pair.Session != "" {
//If the session is not null, this means that a wait can safely happen
//using a long poll
qOpts.WaitIndex = meta.LastIndex
goto WAIT
} else {
// If the session is empty and the lock failed to acquire, then it means
// a lock-delay is in effect and a timed wait must be used
select {
case <-time.After(DefaultLockRetryTime):
goto WAIT
case <-stopCh:
return nil, nil
}
}
}
HELD:
// Watch to ensure we maintain leadership
leaderCh := make(chan struct{})
go l.monitorLock(l.lockSession, leaderCh)
// Set that we own the lock
l.isHeld = true
// Locked! All done
return leaderCh, nil
}
// Unlock released the lock. It is an error to call this
// if the lock is not currently held.
func (l *Lock) Unlock() error {
// Hold the lock as we try to release
l.l.Lock()
defer l.l.Unlock()
// Ensure the lock is actually held
if !l.isHeld {
return ErrLockNotHeld
}
// Set that we no longer own the lock
l.isHeld = false
// Stop the session renew
if l.sessionRenew != nil {
defer func() {
close(l.sessionRenew)
l.sessionRenew = nil
}()
}
// Get the lock entry, and clear the lock session
lockEnt := l.lockEntry(l.lockSession)
l.lockSession = ""
// Release the lock explicitly
kv := l.c.KV()
_, _, err := kv.Release(lockEnt, nil)
if err != nil {
return fmt.Errorf("failed to release lock: %v", err)
}
return nil
}
// Destroy is used to cleanup the lock entry. It is not necessary
// to invoke. It will fail if the lock is in use.
func (l *Lock) Destroy() error {
// Hold the lock as we try to release
l.l.Lock()
defer l.l.Unlock()
// Check if we already hold the lock
if l.isHeld {
return ErrLockHeld
}
// Look for an existing lock
kv := l.c.KV()
pair, _, err := kv.Get(l.opts.Key, nil)
if err != nil {
return fmt.Errorf("failed to read lock: %v", err)
}
// Nothing to do if the lock does not exist
if pair == nil {
return nil
}
// Check for possible flag conflict
if pair.Flags != LockFlagValue {
return ErrLockConflict
}
// Check if it is in use
if pair.Session != "" {
return ErrLockInUse
}
// Attempt the delete
didRemove, _, err := kv.DeleteCAS(pair, nil)
if err != nil {
return fmt.Errorf("failed to remove lock: %v", err)
}
if !didRemove {
return ErrLockInUse
}
return nil
}
// createSession is used to create a new managed session
func (l *Lock) createSession() (string, error) {
session := l.c.Session()
se := l.opts.SessionOpts
if se == nil {
se = &SessionEntry{
Name: l.opts.SessionName,
TTL: l.opts.SessionTTL,
}
}
id, _, err := session.Create(se, nil)
if err != nil {
return "", err
}
return id, nil
}
// lockEntry returns a formatted KVPair for the lock
func (l *Lock) lockEntry(session string) *KVPair {
return &KVPair{
Key: l.opts.Key,
Value: l.opts.Value,
Session: session,
Flags: LockFlagValue,
}
}
// monitorLock is a long running routine to monitor a lock ownership
// It closes the stopCh if we lose our leadership.
func (l *Lock) monitorLock(session string, stopCh chan struct{}) {
defer close(stopCh)
kv := l.c.KV()
opts := &QueryOptions{RequireConsistent: true}
WAIT:
retries := l.opts.MonitorRetries
RETRY:
pair, meta, err := kv.Get(l.opts.Key, opts)
if err != nil {
// If configured we can try to ride out a brief Consul unavailability
// by doing retries. Note that we have to attempt the retry in a non-
// blocking fashion so that we have a clean place to reset the retry
// counter if service is restored.
if retries > 0 && IsRetryableError(err) {
time.Sleep(l.opts.MonitorRetryTime)
retries--
opts.WaitIndex = 0
goto RETRY
}
return
}
if pair != nil && pair.Session == session {
opts.WaitIndex = meta.LastIndex
goto WAIT
}
}

View file

@ -1,11 +0,0 @@
package api
// Operator can be used to perform low-level operator tasks for Consul.
type Operator struct {
c *Client
}
// Operator returns a handle to the operator endpoints.
func (c *Client) Operator() *Operator {
return &Operator{c}
}

View file

@ -1,193 +0,0 @@
// The /v1/operator/area endpoints are available only in Consul Enterprise and
// interact with its network area subsystem. Network areas are used to link
// together Consul servers in different Consul datacenters. With network areas,
// Consul datacenters can be linked together in ways other than a fully-connected
// mesh, as is required for Consul's WAN.
package api
import (
"net"
"time"
)
// Area defines a network area.
type Area struct {
// ID is this identifier for an area (a UUID). This must be left empty
// when creating a new area.
ID string
// PeerDatacenter is the peer Consul datacenter that will make up the
// other side of this network area. Network areas always involve a pair
// of datacenters: the datacenter where the area was created, and the
// peer datacenter. This is required.
PeerDatacenter string
// RetryJoin specifies the address of Consul servers to join to, such as
// an IPs or hostnames with an optional port number. This is optional.
RetryJoin []string
// UseTLS specifies whether gossip over this area should be encrypted with TLS
// if possible.
UseTLS bool
}
// AreaJoinResponse is returned when a join occurs and gives the result for each
// address.
type AreaJoinResponse struct {
// The address that was joined.
Address string
// Whether or not the join was a success.
Joined bool
// If we couldn't join, this is the message with information.
Error string
}
// SerfMember is a generic structure for reporting information about members in
// a Serf cluster. This is only used by the area endpoints right now, but this
// could be expanded to other endpoints in the future.
type SerfMember struct {
// ID is the node identifier (a UUID).
ID string
// Name is the node name.
Name string
// Addr has the IP address.
Addr net.IP
// Port is the RPC port.
Port uint16
// Datacenter is the DC name.
Datacenter string
// Role is "client", "server", or "unknown".
Role string
// Build has the version of the Consul agent.
Build string
// Protocol is the protocol of the Consul agent.
Protocol int
// Status is the Serf health status "none", "alive", "leaving", "left",
// or "failed".
Status string
// RTT is the estimated round trip time from the server handling the
// request to the this member. This will be negative if no RTT estimate
// is available.
RTT time.Duration
}
// AreaCreate will create a new network area. The ID in the given structure must
// be empty and a generated ID will be returned on success.
func (op *Operator) AreaCreate(area *Area, q *WriteOptions) (string, *WriteMeta, error) {
r := op.c.newRequest("POST", "/v1/operator/area")
r.setWriteOptions(q)
r.obj = area
rtt, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return "", nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{}
wm.RequestTime = rtt
var out struct{ ID string }
if err := decodeBody(resp, &out); err != nil {
return "", nil, err
}
return out.ID, wm, nil
}
// AreaUpdate will update the configuration of the network area with the given ID.
func (op *Operator) AreaUpdate(areaID string, area *Area, q *WriteOptions) (string, *WriteMeta, error) {
r := op.c.newRequest("PUT", "/v1/operator/area/"+areaID)
r.setWriteOptions(q)
r.obj = area
rtt, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return "", nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{}
wm.RequestTime = rtt
var out struct{ ID string }
if err := decodeBody(resp, &out); err != nil {
return "", nil, err
}
return out.ID, wm, nil
}
// AreaGet returns a single network area.
func (op *Operator) AreaGet(areaID string, q *QueryOptions) ([]*Area, *QueryMeta, error) {
var out []*Area
qm, err := op.c.query("/v1/operator/area/"+areaID, &out, q)
if err != nil {
return nil, nil, err
}
return out, qm, nil
}
// AreaList returns all the available network areas.
func (op *Operator) AreaList(q *QueryOptions) ([]*Area, *QueryMeta, error) {
var out []*Area
qm, err := op.c.query("/v1/operator/area", &out, q)
if err != nil {
return nil, nil, err
}
return out, qm, nil
}
// AreaDelete deletes the given network area.
func (op *Operator) AreaDelete(areaID string, q *WriteOptions) (*WriteMeta, error) {
r := op.c.newRequest("DELETE", "/v1/operator/area/"+areaID)
r.setWriteOptions(q)
rtt, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{}
wm.RequestTime = rtt
return wm, nil
}
// AreaJoin attempts to join the given set of join addresses to the given
// network area. See the Area structure for details about join addresses.
func (op *Operator) AreaJoin(areaID string, addresses []string, q *WriteOptions) ([]*AreaJoinResponse, *WriteMeta, error) {
r := op.c.newRequest("PUT", "/v1/operator/area/"+areaID+"/join")
r.setWriteOptions(q)
r.obj = addresses
rtt, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{}
wm.RequestTime = rtt
var out []*AreaJoinResponse
if err := decodeBody(resp, &out); err != nil {
return nil, nil, err
}
return out, wm, nil
}
// AreaMembers lists the Serf information about the members in the given area.
func (op *Operator) AreaMembers(areaID string, q *QueryOptions) ([]*SerfMember, *QueryMeta, error) {
var out []*SerfMember
qm, err := op.c.query("/v1/operator/area/"+areaID+"/members", &out, q)
if err != nil {
return nil, nil, err
}
return out, qm, nil
}

View file

@ -1,219 +0,0 @@
package api
import (
"bytes"
"fmt"
"io"
"strconv"
"strings"
"time"
)
// AutopilotConfiguration is used for querying/setting the Autopilot configuration.
// Autopilot helps manage operator tasks related to Consul servers like removing
// failed servers from the Raft quorum.
type AutopilotConfiguration struct {
// CleanupDeadServers controls whether to remove dead servers from the Raft
// peer list when a new server joins
CleanupDeadServers bool
// LastContactThreshold is the limit on the amount of time a server can go
// without leader contact before being considered unhealthy.
LastContactThreshold *ReadableDuration
// MaxTrailingLogs is the amount of entries in the Raft Log that a server can
// be behind before being considered unhealthy.
MaxTrailingLogs uint64
// ServerStabilizationTime is the minimum amount of time a server must be
// in a stable, healthy state before it can be added to the cluster. Only
// applicable with Raft protocol version 3 or higher.
ServerStabilizationTime *ReadableDuration
// (Enterprise-only) RedundancyZoneTag is the node tag to use for separating
// servers into zones for redundancy. If left blank, this feature will be disabled.
RedundancyZoneTag string
// (Enterprise-only) DisableUpgradeMigration will disable Autopilot's upgrade migration
// strategy of waiting until enough newer-versioned servers have been added to the
// cluster before promoting them to voters.
DisableUpgradeMigration bool
// (Enterprise-only) UpgradeVersionTag is the node tag to use for version info when
// performing upgrade migrations. If left blank, the Consul version will be used.
UpgradeVersionTag string
// CreateIndex holds the index corresponding the creation of this configuration.
// This is a read-only field.
CreateIndex uint64
// ModifyIndex will be set to the index of the last update when retrieving the
// Autopilot configuration. Resubmitting a configuration with
// AutopilotCASConfiguration will perform a check-and-set operation which ensures
// there hasn't been a subsequent update since the configuration was retrieved.
ModifyIndex uint64
}
// ServerHealth is the health (from the leader's point of view) of a server.
type ServerHealth struct {
// ID is the raft ID of the server.
ID string
// Name is the node name of the server.
Name string
// Address is the address of the server.
Address string
// The status of the SerfHealth check for the server.
SerfStatus string
// Version is the Consul version of the server.
Version string
// Leader is whether this server is currently the leader.
Leader bool
// LastContact is the time since this node's last contact with the leader.
LastContact *ReadableDuration
// LastTerm is the highest leader term this server has a record of in its Raft log.
LastTerm uint64
// LastIndex is the last log index this server has a record of in its Raft log.
LastIndex uint64
// Healthy is whether or not the server is healthy according to the current
// Autopilot config.
Healthy bool
// Voter is whether this is a voting server.
Voter bool
// StableSince is the last time this server's Healthy value changed.
StableSince time.Time
}
// OperatorHealthReply is a representation of the overall health of the cluster
type OperatorHealthReply struct {
// Healthy is true if all the servers in the cluster are healthy.
Healthy bool
// FailureTolerance is the number of healthy servers that could be lost without
// an outage occurring.
FailureTolerance int
// Servers holds the health of each server.
Servers []ServerHealth
}
// ReadableDuration is a duration type that is serialized to JSON in human readable format.
type ReadableDuration time.Duration
func NewReadableDuration(dur time.Duration) *ReadableDuration {
d := ReadableDuration(dur)
return &d
}
func (d *ReadableDuration) String() string {
return d.Duration().String()
}
func (d *ReadableDuration) Duration() time.Duration {
if d == nil {
return time.Duration(0)
}
return time.Duration(*d)
}
func (d *ReadableDuration) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf(`"%s"`, d.Duration().String())), nil
}
func (d *ReadableDuration) UnmarshalJSON(raw []byte) error {
if d == nil {
return fmt.Errorf("cannot unmarshal to nil pointer")
}
str := string(raw)
if len(str) < 2 || str[0] != '"' || str[len(str)-1] != '"' {
return fmt.Errorf("must be enclosed with quotes: %s", str)
}
dur, err := time.ParseDuration(str[1 : len(str)-1])
if err != nil {
return err
}
*d = ReadableDuration(dur)
return nil
}
// AutopilotGetConfiguration is used to query the current Autopilot configuration.
func (op *Operator) AutopilotGetConfiguration(q *QueryOptions) (*AutopilotConfiguration, error) {
r := op.c.newRequest("GET", "/v1/operator/autopilot/configuration")
r.setQueryOptions(q)
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out AutopilotConfiguration
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return &out, nil
}
// AutopilotSetConfiguration is used to set the current Autopilot configuration.
func (op *Operator) AutopilotSetConfiguration(conf *AutopilotConfiguration, q *WriteOptions) error {
r := op.c.newRequest("PUT", "/v1/operator/autopilot/configuration")
r.setWriteOptions(q)
r.obj = conf
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// AutopilotCASConfiguration is used to perform a Check-And-Set update on the
// Autopilot configuration. The ModifyIndex value will be respected. Returns
// true on success or false on failures.
func (op *Operator) AutopilotCASConfiguration(conf *AutopilotConfiguration, q *WriteOptions) (bool, error) {
r := op.c.newRequest("PUT", "/v1/operator/autopilot/configuration")
r.setWriteOptions(q)
r.params.Set("cas", strconv.FormatUint(conf.ModifyIndex, 10))
r.obj = conf
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return false, err
}
defer resp.Body.Close()
var buf bytes.Buffer
if _, err := io.Copy(&buf, resp.Body); err != nil {
return false, fmt.Errorf("Failed to read response: %v", err)
}
res := strings.Contains(buf.String(), "true")
return res, nil
}
// AutopilotServerHealth
func (op *Operator) AutopilotServerHealth(q *QueryOptions) (*OperatorHealthReply, error) {
r := op.c.newRequest("GET", "/v1/operator/autopilot/health")
r.setQueryOptions(q)
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out OperatorHealthReply
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return &out, nil
}

View file

@ -1,86 +0,0 @@
package api
// keyringRequest is used for performing Keyring operations
type keyringRequest struct {
Key string
}
// KeyringResponse is returned when listing the gossip encryption keys
type KeyringResponse struct {
// Whether this response is for a WAN ring
WAN bool
// The datacenter name this request corresponds to
Datacenter string
// Segment has the network segment this request corresponds to.
Segment string
// A map of the encryption keys to the number of nodes they're installed on
Keys map[string]int
// The total number of nodes in this ring
NumNodes int
}
// KeyringInstall is used to install a new gossip encryption key into the cluster
func (op *Operator) KeyringInstall(key string, q *WriteOptions) error {
r := op.c.newRequest("POST", "/v1/operator/keyring")
r.setWriteOptions(q)
r.obj = keyringRequest{
Key: key,
}
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// KeyringList is used to list the gossip keys installed in the cluster
func (op *Operator) KeyringList(q *QueryOptions) ([]*KeyringResponse, error) {
r := op.c.newRequest("GET", "/v1/operator/keyring")
r.setQueryOptions(q)
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out []*KeyringResponse
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return out, nil
}
// KeyringRemove is used to remove a gossip encryption key from the cluster
func (op *Operator) KeyringRemove(key string, q *WriteOptions) error {
r := op.c.newRequest("DELETE", "/v1/operator/keyring")
r.setWriteOptions(q)
r.obj = keyringRequest{
Key: key,
}
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// KeyringUse is used to change the active gossip encryption key
func (op *Operator) KeyringUse(key string, q *WriteOptions) error {
r := op.c.newRequest("PUT", "/v1/operator/keyring")
r.setWriteOptions(q)
r.obj = keyringRequest{
Key: key,
}
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}

View file

@ -1,89 +0,0 @@
package api
// RaftServer has information about a server in the Raft configuration.
type RaftServer struct {
// ID is the unique ID for the server. These are currently the same
// as the address, but they will be changed to a real GUID in a future
// release of Consul.
ID string
// Node is the node name of the server, as known by Consul, or this
// will be set to "(unknown)" otherwise.
Node string
// Address is the IP:port of the server, used for Raft communications.
Address string
// Leader is true if this server is the current cluster leader.
Leader bool
// Protocol version is the raft protocol version used by the server
ProtocolVersion string
// Voter is true if this server has a vote in the cluster. This might
// be false if the server is staging and still coming online, or if
// it's a non-voting server, which will be added in a future release of
// Consul.
Voter bool
}
// RaftConfiguration is returned when querying for the current Raft configuration.
type RaftConfiguration struct {
// Servers has the list of servers in the Raft configuration.
Servers []*RaftServer
// Index has the Raft index of this configuration.
Index uint64
}
// RaftGetConfiguration is used to query the current Raft peer set.
func (op *Operator) RaftGetConfiguration(q *QueryOptions) (*RaftConfiguration, error) {
r := op.c.newRequest("GET", "/v1/operator/raft/configuration")
r.setQueryOptions(q)
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var out RaftConfiguration
if err := decodeBody(resp, &out); err != nil {
return nil, err
}
return &out, nil
}
// RaftRemovePeerByAddress is used to kick a stale peer (one that it in the Raft
// quorum but no longer known to Serf or the catalog) by address in the form of
// "IP:port".
func (op *Operator) RaftRemovePeerByAddress(address string, q *WriteOptions) error {
r := op.c.newRequest("DELETE", "/v1/operator/raft/peer")
r.setWriteOptions(q)
r.params.Set("address", string(address))
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}
// RaftRemovePeerByID is used to kick a stale peer (one that it in the Raft
// quorum but no longer known to Serf or the catalog) by ID.
func (op *Operator) RaftRemovePeerByID(id string, q *WriteOptions) error {
r := op.c.newRequest("DELETE", "/v1/operator/raft/peer")
r.setWriteOptions(q)
r.params.Set("id", string(id))
_, resp, err := requireOK(op.c.doRequest(r))
if err != nil {
return err
}
resp.Body.Close()
return nil
}

View file

@ -1,11 +0,0 @@
package api
// SegmentList returns all the available LAN segments.
func (op *Operator) SegmentList(q *QueryOptions) ([]string, *QueryMeta, error) {
var out []string
qm, err := op.c.query("/v1/operator/segment", &out, q)
if err != nil {
return nil, nil, err
}
return out, qm, nil
}

View file

@ -1,198 +0,0 @@
package api
// QueryDatacenterOptions sets options about how we fail over if there are no
// healthy nodes in the local datacenter.
type QueryDatacenterOptions struct {
// NearestN is set to the number of remote datacenters to try, based on
// network coordinates.
NearestN int
// Datacenters is a fixed list of datacenters to try after NearestN. We
// never try a datacenter multiple times, so those are subtracted from
// this list before proceeding.
Datacenters []string
}
// QueryDNSOptions controls settings when query results are served over DNS.
type QueryDNSOptions struct {
// TTL is the time to live for the served DNS results.
TTL string
}
// ServiceQuery is used to query for a set of healthy nodes offering a specific
// service.
type ServiceQuery struct {
// Service is the service to query.
Service string
// Near allows baking in the name of a node to automatically distance-
// sort from. The magic "_agent" value is supported, which sorts near
// the agent which initiated the request by default.
Near string
// Failover controls what we do if there are no healthy nodes in the
// local datacenter.
Failover QueryDatacenterOptions
// If OnlyPassing is true then we will only include nodes with passing
// health checks (critical AND warning checks will cause a node to be
// discarded)
OnlyPassing bool
// Tags are a set of required and/or disallowed tags. If a tag is in
// this list it must be present. If the tag is preceded with "!" then
// it is disallowed.
Tags []string
// NodeMeta is a map of required node metadata fields. If a key/value
// pair is in this map it must be present on the node in order for the
// service entry to be returned.
NodeMeta map[string]string
}
// QueryTemplate carries the arguments for creating a templated query.
type QueryTemplate struct {
// Type specifies the type of the query template. Currently only
// "name_prefix_match" is supported. This field is required.
Type string
// Regexp allows specifying a regex pattern to match against the name
// of the query being executed.
Regexp string
}
// PrepatedQueryDefinition defines a complete prepared query.
type PreparedQueryDefinition struct {
// ID is this UUID-based ID for the query, always generated by Consul.
ID string
// Name is an optional friendly name for the query supplied by the
// user. NOTE - if this feature is used then it will reduce the security
// of any read ACL associated with this query/service since this name
// can be used to locate nodes with supplying any ACL.
Name string
// Session is an optional session to tie this query's lifetime to. If
// this is omitted then the query will not expire.
Session string
// Token is the ACL token used when the query was created, and it is
// used when a query is subsequently executed. This token, or a token
// with management privileges, must be used to change the query later.
Token string
// Service defines a service query (leaving things open for other types
// later).
Service ServiceQuery
// DNS has options that control how the results of this query are
// served over DNS.
DNS QueryDNSOptions
// Template is used to pass through the arguments for creating a
// prepared query with an attached template. If a template is given,
// interpolations are possible in other struct fields.
Template QueryTemplate
}
// PreparedQueryExecuteResponse has the results of executing a query.
type PreparedQueryExecuteResponse struct {
// Service is the service that was queried.
Service string
// Nodes has the nodes that were output by the query.
Nodes []ServiceEntry
// DNS has the options for serving these results over DNS.
DNS QueryDNSOptions
// Datacenter is the datacenter that these results came from.
Datacenter string
// Failovers is a count of how many times we had to query a remote
// datacenter.
Failovers int
}
// PreparedQuery can be used to query the prepared query endpoints.
type PreparedQuery struct {
c *Client
}
// PreparedQuery returns a handle to the prepared query endpoints.
func (c *Client) PreparedQuery() *PreparedQuery {
return &PreparedQuery{c}
}
// Create makes a new prepared query. The ID of the new query is returned.
func (c *PreparedQuery) Create(query *PreparedQueryDefinition, q *WriteOptions) (string, *WriteMeta, error) {
r := c.c.newRequest("POST", "/v1/query")
r.setWriteOptions(q)
r.obj = query
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return "", nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{}
wm.RequestTime = rtt
var out struct{ ID string }
if err := decodeBody(resp, &out); err != nil {
return "", nil, err
}
return out.ID, wm, nil
}
// Update makes updates to an existing prepared query.
func (c *PreparedQuery) Update(query *PreparedQueryDefinition, q *WriteOptions) (*WriteMeta, error) {
return c.c.write("/v1/query/"+query.ID, query, nil, q)
}
// List is used to fetch all the prepared queries (always requires a management
// token).
func (c *PreparedQuery) List(q *QueryOptions) ([]*PreparedQueryDefinition, *QueryMeta, error) {
var out []*PreparedQueryDefinition
qm, err := c.c.query("/v1/query", &out, q)
if err != nil {
return nil, nil, err
}
return out, qm, nil
}
// Get is used to fetch a specific prepared query.
func (c *PreparedQuery) Get(queryID string, q *QueryOptions) ([]*PreparedQueryDefinition, *QueryMeta, error) {
var out []*PreparedQueryDefinition
qm, err := c.c.query("/v1/query/"+queryID, &out, q)
if err != nil {
return nil, nil, err
}
return out, qm, nil
}
// Delete is used to delete a specific prepared query.
func (c *PreparedQuery) Delete(queryID string, q *WriteOptions) (*WriteMeta, error) {
r := c.c.newRequest("DELETE", "/v1/query/"+queryID)
r.setWriteOptions(q)
rtt, resp, err := requireOK(c.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{}
wm.RequestTime = rtt
return wm, nil
}
// Execute is used to execute a specific prepared query. You can execute using
// a query ID or name.
func (c *PreparedQuery) Execute(queryIDOrName string, q *QueryOptions) (*PreparedQueryExecuteResponse, *QueryMeta, error) {
var out *PreparedQueryExecuteResponse
qm, err := c.c.query("/v1/query/"+queryIDOrName+"/execute", &out, q)
if err != nil {
return nil, nil, err
}
return out, qm, nil
}

View file

@ -1,24 +0,0 @@
package api
// Raw can be used to do raw queries against custom endpoints
type Raw struct {
c *Client
}
// Raw returns a handle to query endpoints
func (c *Client) Raw() *Raw {
return &Raw{c}
}
// Query is used to do a GET request against an endpoint
// and deserialize the response into an interface using
// standard Consul conventions.
func (raw *Raw) Query(endpoint string, out interface{}, q *QueryOptions) (*QueryMeta, error) {
return raw.c.query(endpoint, out, q)
}
// Write is used to do a PUT request against an endpoint
// and serialize/deserialized using the standard Consul conventions.
func (raw *Raw) Write(endpoint string, in, out interface{}, q *WriteOptions) (*WriteMeta, error) {
return raw.c.write(endpoint, in, out, q)
}

View file

@ -1,513 +0,0 @@
package api
import (
"encoding/json"
"fmt"
"path"
"sync"
"time"
)
const (
// DefaultSemaphoreSessionName is the Session Name we assign if none is provided
DefaultSemaphoreSessionName = "Consul API Semaphore"
// DefaultSemaphoreSessionTTL is the default session TTL if no Session is provided
// when creating a new Semaphore. This is used because we do not have another
// other check to depend upon.
DefaultSemaphoreSessionTTL = "15s"
// DefaultSemaphoreWaitTime is how long we block for at a time to check if semaphore
// acquisition is possible. This affects the minimum time it takes to cancel
// a Semaphore acquisition.
DefaultSemaphoreWaitTime = 15 * time.Second
// DefaultSemaphoreKey is the key used within the prefix to
// use for coordination between all the contenders.
DefaultSemaphoreKey = ".lock"
// SemaphoreFlagValue is a magic flag we set to indicate a key
// is being used for a semaphore. It is used to detect a potential
// conflict with a lock.
SemaphoreFlagValue = 0xe0f69a2baa414de0
)
var (
// ErrSemaphoreHeld is returned if we attempt to double lock
ErrSemaphoreHeld = fmt.Errorf("Semaphore already held")
// ErrSemaphoreNotHeld is returned if we attempt to unlock a semaphore
// that we do not hold.
ErrSemaphoreNotHeld = fmt.Errorf("Semaphore not held")
// ErrSemaphoreInUse is returned if we attempt to destroy a semaphore
// that is in use.
ErrSemaphoreInUse = fmt.Errorf("Semaphore in use")
// ErrSemaphoreConflict is returned if the flags on a key
// used for a semaphore do not match expectation
ErrSemaphoreConflict = fmt.Errorf("Existing key does not match semaphore use")
)
// Semaphore is used to implement a distributed semaphore
// using the Consul KV primitives.
type Semaphore struct {
c *Client
opts *SemaphoreOptions
isHeld bool
sessionRenew chan struct{}
lockSession string
l sync.Mutex
}
// SemaphoreOptions is used to parameterize the Semaphore
type SemaphoreOptions struct {
Prefix string // Must be set and have write permissions
Limit int // Must be set, and be positive
Value []byte // Optional, value to associate with the contender entry
Session string // Optional, created if not specified
SessionName string // Optional, defaults to DefaultLockSessionName
SessionTTL string // Optional, defaults to DefaultLockSessionTTL
MonitorRetries int // Optional, defaults to 0 which means no retries
MonitorRetryTime time.Duration // Optional, defaults to DefaultMonitorRetryTime
SemaphoreWaitTime time.Duration // Optional, defaults to DefaultSemaphoreWaitTime
SemaphoreTryOnce bool // Optional, defaults to false which means try forever
}
// semaphoreLock is written under the DefaultSemaphoreKey and
// is used to coordinate between all the contenders.
type semaphoreLock struct {
// Limit is the integer limit of holders. This is used to
// verify that all the holders agree on the value.
Limit int
// Holders is a list of all the semaphore holders.
// It maps the session ID to true. It is used as a set effectively.
Holders map[string]bool
}
// SemaphorePrefix is used to created a Semaphore which will operate
// at the given KV prefix and uses the given limit for the semaphore.
// The prefix must have write privileges, and the limit must be agreed
// upon by all contenders.
func (c *Client) SemaphorePrefix(prefix string, limit int) (*Semaphore, error) {
opts := &SemaphoreOptions{
Prefix: prefix,
Limit: limit,
}
return c.SemaphoreOpts(opts)
}
// SemaphoreOpts is used to create a Semaphore with the given options.
// The prefix must have write privileges, and the limit must be agreed
// upon by all contenders. If a Session is not provided, one will be created.
func (c *Client) SemaphoreOpts(opts *SemaphoreOptions) (*Semaphore, error) {
if opts.Prefix == "" {
return nil, fmt.Errorf("missing prefix")
}
if opts.Limit <= 0 {
return nil, fmt.Errorf("semaphore limit must be positive")
}
if opts.SessionName == "" {
opts.SessionName = DefaultSemaphoreSessionName
}
if opts.SessionTTL == "" {
opts.SessionTTL = DefaultSemaphoreSessionTTL
} else {
if _, err := time.ParseDuration(opts.SessionTTL); err != nil {
return nil, fmt.Errorf("invalid SessionTTL: %v", err)
}
}
if opts.MonitorRetryTime == 0 {
opts.MonitorRetryTime = DefaultMonitorRetryTime
}
if opts.SemaphoreWaitTime == 0 {
opts.SemaphoreWaitTime = DefaultSemaphoreWaitTime
}
s := &Semaphore{
c: c,
opts: opts,
}
return s, nil
}
// Acquire attempts to reserve a slot in the semaphore, blocking until
// success, interrupted via the stopCh or an error is encountered.
// Providing a non-nil stopCh can be used to abort the attempt.
// On success, a channel is returned that represents our slot.
// This channel could be closed at any time due to session invalidation,
// communication errors, operator intervention, etc. It is NOT safe to
// assume that the slot is held until Release() unless the Session is specifically
// created without any associated health checks. By default Consul sessions
// prefer liveness over safety and an application must be able to handle
// the session being lost.
func (s *Semaphore) Acquire(stopCh <-chan struct{}) (<-chan struct{}, error) {
// Hold the lock as we try to acquire
s.l.Lock()
defer s.l.Unlock()
// Check if we already hold the semaphore
if s.isHeld {
return nil, ErrSemaphoreHeld
}
// Check if we need to create a session first
s.lockSession = s.opts.Session
if s.lockSession == "" {
sess, err := s.createSession()
if err != nil {
return nil, fmt.Errorf("failed to create session: %v", err)
}
s.sessionRenew = make(chan struct{})
s.lockSession = sess
session := s.c.Session()
go session.RenewPeriodic(s.opts.SessionTTL, sess, nil, s.sessionRenew)
// If we fail to acquire the lock, cleanup the session
defer func() {
if !s.isHeld {
close(s.sessionRenew)
s.sessionRenew = nil
}
}()
}
// Create the contender entry
kv := s.c.KV()
made, _, err := kv.Acquire(s.contenderEntry(s.lockSession), nil)
if err != nil || !made {
return nil, fmt.Errorf("failed to make contender entry: %v", err)
}
// Setup the query options
qOpts := &QueryOptions{
WaitTime: s.opts.SemaphoreWaitTime,
}
start := time.Now()
attempts := 0
WAIT:
// Check if we should quit
select {
case <-stopCh:
return nil, nil
default:
}
// Handle the one-shot mode.
if s.opts.SemaphoreTryOnce && attempts > 0 {
elapsed := time.Since(start)
if elapsed > qOpts.WaitTime {
return nil, nil
}
qOpts.WaitTime -= elapsed
}
attempts++
// Read the prefix
pairs, meta, err := kv.List(s.opts.Prefix, qOpts)
if err != nil {
return nil, fmt.Errorf("failed to read prefix: %v", err)
}
// Decode the lock
lockPair := s.findLock(pairs)
if lockPair.Flags != SemaphoreFlagValue {
return nil, ErrSemaphoreConflict
}
lock, err := s.decodeLock(lockPair)
if err != nil {
return nil, err
}
// Verify we agree with the limit
if lock.Limit != s.opts.Limit {
return nil, fmt.Errorf("semaphore limit conflict (lock: %d, local: %d)",
lock.Limit, s.opts.Limit)
}
// Prune the dead holders
s.pruneDeadHolders(lock, pairs)
// Check if the lock is held
if len(lock.Holders) >= lock.Limit {
qOpts.WaitIndex = meta.LastIndex
goto WAIT
}
// Create a new lock with us as a holder
lock.Holders[s.lockSession] = true
newLock, err := s.encodeLock(lock, lockPair.ModifyIndex)
if err != nil {
return nil, err
}
// Attempt the acquisition
didSet, _, err := kv.CAS(newLock, nil)
if err != nil {
return nil, fmt.Errorf("failed to update lock: %v", err)
}
if !didSet {
// Update failed, could have been a race with another contender,
// retry the operation
goto WAIT
}
// Watch to ensure we maintain ownership of the slot
lockCh := make(chan struct{})
go s.monitorLock(s.lockSession, lockCh)
// Set that we own the lock
s.isHeld = true
// Acquired! All done
return lockCh, nil
}
// Release is used to voluntarily give up our semaphore slot. It is
// an error to call this if the semaphore has not been acquired.
func (s *Semaphore) Release() error {
// Hold the lock as we try to release
s.l.Lock()
defer s.l.Unlock()
// Ensure the lock is actually held
if !s.isHeld {
return ErrSemaphoreNotHeld
}
// Set that we no longer own the lock
s.isHeld = false
// Stop the session renew
if s.sessionRenew != nil {
defer func() {
close(s.sessionRenew)
s.sessionRenew = nil
}()
}
// Get and clear the lock session
lockSession := s.lockSession
s.lockSession = ""
// Remove ourselves as a lock holder
kv := s.c.KV()
key := path.Join(s.opts.Prefix, DefaultSemaphoreKey)
READ:
pair, _, err := kv.Get(key, nil)
if err != nil {
return err
}
if pair == nil {
pair = &KVPair{}
}
lock, err := s.decodeLock(pair)
if err != nil {
return err
}
// Create a new lock without us as a holder
if _, ok := lock.Holders[lockSession]; ok {
delete(lock.Holders, lockSession)
newLock, err := s.encodeLock(lock, pair.ModifyIndex)
if err != nil {
return err
}
// Swap the locks
didSet, _, err := kv.CAS(newLock, nil)
if err != nil {
return fmt.Errorf("failed to update lock: %v", err)
}
if !didSet {
goto READ
}
}
// Destroy the contender entry
contenderKey := path.Join(s.opts.Prefix, lockSession)
if _, err := kv.Delete(contenderKey, nil); err != nil {
return err
}
return nil
}
// Destroy is used to cleanup the semaphore entry. It is not necessary
// to invoke. It will fail if the semaphore is in use.
func (s *Semaphore) Destroy() error {
// Hold the lock as we try to acquire
s.l.Lock()
defer s.l.Unlock()
// Check if we already hold the semaphore
if s.isHeld {
return ErrSemaphoreHeld
}
// List for the semaphore
kv := s.c.KV()
pairs, _, err := kv.List(s.opts.Prefix, nil)
if err != nil {
return fmt.Errorf("failed to read prefix: %v", err)
}
// Find the lock pair, bail if it doesn't exist
lockPair := s.findLock(pairs)
if lockPair.ModifyIndex == 0 {
return nil
}
if lockPair.Flags != SemaphoreFlagValue {
return ErrSemaphoreConflict
}
// Decode the lock
lock, err := s.decodeLock(lockPair)
if err != nil {
return err
}
// Prune the dead holders
s.pruneDeadHolders(lock, pairs)
// Check if there are any holders
if len(lock.Holders) > 0 {
return ErrSemaphoreInUse
}
// Attempt the delete
didRemove, _, err := kv.DeleteCAS(lockPair, nil)
if err != nil {
return fmt.Errorf("failed to remove semaphore: %v", err)
}
if !didRemove {
return ErrSemaphoreInUse
}
return nil
}
// createSession is used to create a new managed session
func (s *Semaphore) createSession() (string, error) {
session := s.c.Session()
se := &SessionEntry{
Name: s.opts.SessionName,
TTL: s.opts.SessionTTL,
Behavior: SessionBehaviorDelete,
}
id, _, err := session.Create(se, nil)
if err != nil {
return "", err
}
return id, nil
}
// contenderEntry returns a formatted KVPair for the contender
func (s *Semaphore) contenderEntry(session string) *KVPair {
return &KVPair{
Key: path.Join(s.opts.Prefix, session),
Value: s.opts.Value,
Session: session,
Flags: SemaphoreFlagValue,
}
}
// findLock is used to find the KV Pair which is used for coordination
func (s *Semaphore) findLock(pairs KVPairs) *KVPair {
key := path.Join(s.opts.Prefix, DefaultSemaphoreKey)
for _, pair := range pairs {
if pair.Key == key {
return pair
}
}
return &KVPair{Flags: SemaphoreFlagValue}
}
// decodeLock is used to decode a semaphoreLock from an
// entry in Consul
func (s *Semaphore) decodeLock(pair *KVPair) (*semaphoreLock, error) {
// Handle if there is no lock
if pair == nil || pair.Value == nil {
return &semaphoreLock{
Limit: s.opts.Limit,
Holders: make(map[string]bool),
}, nil
}
l := &semaphoreLock{}
if err := json.Unmarshal(pair.Value, l); err != nil {
return nil, fmt.Errorf("lock decoding failed: %v", err)
}
return l, nil
}
// encodeLock is used to encode a semaphoreLock into a KVPair
// that can be PUT
func (s *Semaphore) encodeLock(l *semaphoreLock, oldIndex uint64) (*KVPair, error) {
enc, err := json.Marshal(l)
if err != nil {
return nil, fmt.Errorf("lock encoding failed: %v", err)
}
pair := &KVPair{
Key: path.Join(s.opts.Prefix, DefaultSemaphoreKey),
Value: enc,
Flags: SemaphoreFlagValue,
ModifyIndex: oldIndex,
}
return pair, nil
}
// pruneDeadHolders is used to remove all the dead lock holders
func (s *Semaphore) pruneDeadHolders(lock *semaphoreLock, pairs KVPairs) {
// Gather all the live holders
alive := make(map[string]struct{}, len(pairs))
for _, pair := range pairs {
if pair.Session != "" {
alive[pair.Session] = struct{}{}
}
}
// Remove any holders that are dead
for holder := range lock.Holders {
if _, ok := alive[holder]; !ok {
delete(lock.Holders, holder)
}
}
}
// monitorLock is a long running routine to monitor a semaphore ownership
// It closes the stopCh if we lose our slot.
func (s *Semaphore) monitorLock(session string, stopCh chan struct{}) {
defer close(stopCh)
kv := s.c.KV()
opts := &QueryOptions{RequireConsistent: true}
WAIT:
retries := s.opts.MonitorRetries
RETRY:
pairs, meta, err := kv.List(s.opts.Prefix, opts)
if err != nil {
// If configured we can try to ride out a brief Consul unavailability
// by doing retries. Note that we have to attempt the retry in a non-
// blocking fashion so that we have a clean place to reset the retry
// counter if service is restored.
if retries > 0 && IsRetryableError(err) {
time.Sleep(s.opts.MonitorRetryTime)
retries--
opts.WaitIndex = 0
goto RETRY
}
return
}
lockPair := s.findLock(pairs)
lock, err := s.decodeLock(lockPair)
if err != nil {
return
}
s.pruneDeadHolders(lock, pairs)
if _, ok := lock.Holders[session]; ok {
opts.WaitIndex = meta.LastIndex
goto WAIT
}
}

View file

@ -1,224 +0,0 @@
package api
import (
"errors"
"fmt"
"time"
)
const (
// SessionBehaviorRelease is the default behavior and causes
// all associated locks to be released on session invalidation.
SessionBehaviorRelease = "release"
// SessionBehaviorDelete is new in Consul 0.5 and changes the
// behavior to delete all associated locks on session invalidation.
// It can be used in a way similar to Ephemeral Nodes in ZooKeeper.
SessionBehaviorDelete = "delete"
)
var ErrSessionExpired = errors.New("session expired")
// SessionEntry represents a session in consul
type SessionEntry struct {
CreateIndex uint64
ID string
Name string
Node string
Checks []string
LockDelay time.Duration
Behavior string
TTL string
}
// Session can be used to query the Session endpoints
type Session struct {
c *Client
}
// Session returns a handle to the session endpoints
func (c *Client) Session() *Session {
return &Session{c}
}
// CreateNoChecks is like Create but is used specifically to create
// a session with no associated health checks.
func (s *Session) CreateNoChecks(se *SessionEntry, q *WriteOptions) (string, *WriteMeta, error) {
body := make(map[string]interface{})
body["Checks"] = []string{}
if se != nil {
if se.Name != "" {
body["Name"] = se.Name
}
if se.Node != "" {
body["Node"] = se.Node
}
if se.LockDelay != 0 {
body["LockDelay"] = durToMsec(se.LockDelay)
}
if se.Behavior != "" {
body["Behavior"] = se.Behavior
}
if se.TTL != "" {
body["TTL"] = se.TTL
}
}
return s.create(body, q)
}
// Create makes a new session. Providing a session entry can
// customize the session. It can also be nil to use defaults.
func (s *Session) Create(se *SessionEntry, q *WriteOptions) (string, *WriteMeta, error) {
var obj interface{}
if se != nil {
body := make(map[string]interface{})
obj = body
if se.Name != "" {
body["Name"] = se.Name
}
if se.Node != "" {
body["Node"] = se.Node
}
if se.LockDelay != 0 {
body["LockDelay"] = durToMsec(se.LockDelay)
}
if len(se.Checks) > 0 {
body["Checks"] = se.Checks
}
if se.Behavior != "" {
body["Behavior"] = se.Behavior
}
if se.TTL != "" {
body["TTL"] = se.TTL
}
}
return s.create(obj, q)
}
func (s *Session) create(obj interface{}, q *WriteOptions) (string, *WriteMeta, error) {
var out struct{ ID string }
wm, err := s.c.write("/v1/session/create", obj, &out, q)
if err != nil {
return "", nil, err
}
return out.ID, wm, nil
}
// Destroy invalidates a given session
func (s *Session) Destroy(id string, q *WriteOptions) (*WriteMeta, error) {
wm, err := s.c.write("/v1/session/destroy/"+id, nil, nil, q)
if err != nil {
return nil, err
}
return wm, nil
}
// Renew renews the TTL on a given session
func (s *Session) Renew(id string, q *WriteOptions) (*SessionEntry, *WriteMeta, error) {
r := s.c.newRequest("PUT", "/v1/session/renew/"+id)
r.setWriteOptions(q)
rtt, resp, err := s.c.doRequest(r)
if err != nil {
return nil, nil, err
}
defer resp.Body.Close()
wm := &WriteMeta{RequestTime: rtt}
if resp.StatusCode == 404 {
return nil, wm, nil
} else if resp.StatusCode != 200 {
return nil, nil, fmt.Errorf("Unexpected response code: %d", resp.StatusCode)
}
var entries []*SessionEntry
if err := decodeBody(resp, &entries); err != nil {
return nil, nil, fmt.Errorf("Failed to read response: %v", err)
}
if len(entries) > 0 {
return entries[0], wm, nil
}
return nil, wm, nil
}
// RenewPeriodic is used to periodically invoke Session.Renew on a
// session until a doneCh is closed. This is meant to be used in a long running
// goroutine to ensure a session stays valid.
func (s *Session) RenewPeriodic(initialTTL string, id string, q *WriteOptions, doneCh <-chan struct{}) error {
ctx := q.Context()
ttl, err := time.ParseDuration(initialTTL)
if err != nil {
return err
}
waitDur := ttl / 2
lastRenewTime := time.Now()
var lastErr error
for {
if time.Since(lastRenewTime) > ttl {
return lastErr
}
select {
case <-time.After(waitDur):
entry, _, err := s.Renew(id, q)
if err != nil {
waitDur = time.Second
lastErr = err
continue
}
if entry == nil {
return ErrSessionExpired
}
// Handle the server updating the TTL
ttl, _ = time.ParseDuration(entry.TTL)
waitDur = ttl / 2
lastRenewTime = time.Now()
case <-doneCh:
// Attempt a session destroy
s.Destroy(id, q)
return nil
case <-ctx.Done():
// Bail immediately since attempting the destroy would
// use the canceled context in q, which would just bail.
return ctx.Err()
}
}
}
// Info looks up a single session
func (s *Session) Info(id string, q *QueryOptions) (*SessionEntry, *QueryMeta, error) {
var entries []*SessionEntry
qm, err := s.c.query("/v1/session/info/"+id, &entries, q)
if err != nil {
return nil, nil, err
}
if len(entries) > 0 {
return entries[0], qm, nil
}
return nil, qm, nil
}
// List gets sessions for a node
func (s *Session) Node(node string, q *QueryOptions) ([]*SessionEntry, *QueryMeta, error) {
var entries []*SessionEntry
qm, err := s.c.query("/v1/session/node/"+node, &entries, q)
if err != nil {
return nil, nil, err
}
return entries, qm, nil
}
// List gets all active sessions
func (s *Session) List(q *QueryOptions) ([]*SessionEntry, *QueryMeta, error) {
var entries []*SessionEntry
qm, err := s.c.query("/v1/session/list", &entries, q)
if err != nil {
return nil, nil, err
}
return entries, qm, nil
}

View file

@ -1,47 +0,0 @@
package api
import (
"io"
)
// Snapshot can be used to query the /v1/snapshot endpoint to take snapshots of
// Consul's internal state and restore snapshots for disaster recovery.
type Snapshot struct {
c *Client
}
// Snapshot returns a handle that exposes the snapshot endpoints.
func (c *Client) Snapshot() *Snapshot {
return &Snapshot{c}
}
// Save requests a new snapshot and provides an io.ReadCloser with the snapshot
// data to save. If this doesn't return an error, then it's the responsibility
// of the caller to close it. Only a subset of the QueryOptions are supported:
// Datacenter, AllowStale, and Token.
func (s *Snapshot) Save(q *QueryOptions) (io.ReadCloser, *QueryMeta, error) {
r := s.c.newRequest("GET", "/v1/snapshot")
r.setQueryOptions(q)
rtt, resp, err := requireOK(s.c.doRequest(r))
if err != nil {
return nil, nil, err
}
qm := &QueryMeta{}
parseQueryMeta(resp, qm)
qm.RequestTime = rtt
return resp.Body, qm, nil
}
// Restore streams in an existing snapshot and attempts to restore it.
func (s *Snapshot) Restore(q *WriteOptions, in io.Reader) error {
r := s.c.newRequest("PUT", "/v1/snapshot")
r.body = in
r.setWriteOptions(q)
_, _, err := requireOK(s.c.doRequest(r))
if err != nil {
return err
}
return nil
}

View file

@ -1,43 +0,0 @@
package api
// Status can be used to query the Status endpoints
type Status struct {
c *Client
}
// Status returns a handle to the status endpoints
func (c *Client) Status() *Status {
return &Status{c}
}
// Leader is used to query for a known leader
func (s *Status) Leader() (string, error) {
r := s.c.newRequest("GET", "/v1/status/leader")
_, resp, err := requireOK(s.c.doRequest(r))
if err != nil {
return "", err
}
defer resp.Body.Close()
var leader string
if err := decodeBody(resp, &leader); err != nil {
return "", err
}
return leader, nil
}
// Peers is used to query for a known raft peers
func (s *Status) Peers() ([]string, error) {
r := s.c.newRequest("GET", "/v1/status/peers")
_, resp, err := requireOK(s.c.doRequest(r))
if err != nil {
return nil, err
}
defer resp.Body.Close()
var peers []string
if err := decodeBody(resp, &peers); err != nil {
return nil, err
}
return peers, nil
}

View file

@ -1,10 +0,0 @@
# Proprietary License
This license is temporary while a more official one is drafted. However,
this should make it clear:
The text contents of this website are MPL 2.0 licensed.
The design contents of this website are proprietary and may not be reproduced
or reused in any way other than to run the website locally. The license for
the design is owned solely by HashiCorp, Inc.

View file

@ -1,363 +0,0 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. "Contributor"
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. "Incompatible With Secondary Licenses"
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the terms of
a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in a
separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible, whether
at the time of the initial grant or subsequently, any and all of the
rights conveyed by this License.
1.10. "Modifications"
means any of the following:
a. any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the License,
by the making, using, selling, offering for sale, having made, import,
or transfer of either its Contributions or its Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, "control" means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights to
grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter the
recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty, or
limitations of liability) contained within the Source Code Form of the
Covered Software, except that You may alter any license notices to the
extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute,
judicial order, or regulation then You must: (a) comply with the terms of
this License to the maximum extent possible; and (b) describe the
limitations and the code they affect. Such description must be placed in a
text file included with all distributions of the Covered Software under
this License. Except to the extent prohibited by statute or regulation,
such description must be sufficiently detailed for a recipient of ordinary
skill to be able to understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing
basis, if such Contributor fails to notify You of the non-compliance by
some reasonable means prior to 60 days after You have come back into
compliance. Moreover, Your grants from a particular Contributor are
reinstated on an ongoing basis if such Contributor notifies You of the
non-compliance by some reasonable means, this is the first time You have
received notice of non-compliance with this License from such
Contributor, and You become compliant prior to 30 days after Your receipt
of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an "as is" basis,
without warranty of any kind, either expressed, implied, or statutory,
including, without limitation, warranties that the Covered Software is free
of defects, merchantable, fit for a particular purpose or non-infringing.
The entire risk as to the quality and performance of the Covered Software
is with You. Should any Covered Software prove defective in any respect,
You (not any Contributor) assume the cost of any necessary servicing,
repair, or correction. This disclaimer of warranty constitutes an essential
part of this License. No use of any Covered Software is authorized under
this License except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from
such party's negligence to the extent applicable law prohibits such
limitation. Some jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and limitation may
not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts
of a jurisdiction where the defendant maintains its principal place of
business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions. Nothing
in this Section shall prevent a party's ability to bring cross-claims or
counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides that
the language of a contract shall be construed against the drafter shall not
be used to construe this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses If You choose to distribute Source Code Form that is
Incompatible With Secondary Licenses under the terms of this version of
the License, the notice described in Exhibit B of this License must be
attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file,
then You may include the notice in a location (such as a LICENSE file in a
relevant directory) where a recipient would be likely to look for such a
notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
This Source Code Form is "Incompatible
With Secondary Licenses", as defined by
the Mozilla Public License, v. 2.0.

View file

@ -1,56 +0,0 @@
package cleanhttp
import (
"net"
"net/http"
"runtime"
"time"
)
// DefaultTransport returns a new http.Transport with similar default values to
// http.DefaultTransport, but with idle connections and keepalives disabled.
func DefaultTransport() *http.Transport {
transport := DefaultPooledTransport()
transport.DisableKeepAlives = true
transport.MaxIdleConnsPerHost = -1
return transport
}
// DefaultPooledTransport returns a new http.Transport with similar default
// values to http.DefaultTransport. Do not use this for transient transports as
// it can leak file descriptors over time. Only use this for transports that
// will be re-used for the same host(s).
func DefaultPooledTransport() *http.Transport {
transport := &http.Transport{
Proxy: http.ProxyFromEnvironment,
DialContext: (&net.Dialer{
Timeout: 30 * time.Second,
KeepAlive: 30 * time.Second,
}).DialContext,
MaxIdleConns: 100,
IdleConnTimeout: 90 * time.Second,
TLSHandshakeTimeout: 10 * time.Second,
ExpectContinueTimeout: 1 * time.Second,
MaxIdleConnsPerHost: runtime.GOMAXPROCS(0) + 1,
}
return transport
}
// DefaultClient returns a new http.Client with similar default values to
// http.Client, but with a non-shared Transport, idle connections disabled, and
// keepalives disabled.
func DefaultClient() *http.Client {
return &http.Client{
Transport: DefaultTransport(),
}
}
// DefaultPooledClient returns a new http.Client with similar default values to
// http.Client, but with a shared Transport. Do not use this function for
// transient clients as it can leak file descriptors over time. Only use this
// for clients that will be re-used for the same host(s).
func DefaultPooledClient() *http.Client {
return &http.Client{
Transport: DefaultPooledTransport(),
}
}

View file

@ -1,20 +0,0 @@
// Package cleanhttp offers convenience utilities for acquiring "clean"
// http.Transport and http.Client structs.
//
// Values set on http.DefaultClient and http.DefaultTransport affect all
// callers. This can have detrimental effects, esepcially in TLS contexts,
// where client or root certificates set to talk to multiple endpoints can end
// up displacing each other, leading to hard-to-debug issues. This package
// provides non-shared http.Client and http.Transport structs to ensure that
// the configuration will not be overwritten by other parts of the application
// or dependencies.
//
// The DefaultClient and DefaultTransport functions disable idle connections
// and keepalives. Without ensuring that idle connections are closed before
// garbage collection, short-term clients/transports can leak file descriptors,
// eventually leading to "too many open files" errors. If you will be
// connecting to the same hosts repeatedly from the same client, you can use
// DefaultPooledClient to receive a client that has connection pooling
// semantics similar to http.DefaultClient.
//
package cleanhttp

View file

@ -1,363 +0,0 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. "Contributor"
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. "Incompatible With Secondary Licenses"
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the terms of
a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in a
separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible, whether
at the time of the initial grant or subsequently, any and all of the
rights conveyed by this License.
1.10. "Modifications"
means any of the following:
a. any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the License,
by the making, using, selling, offering for sale, having made, import,
or transfer of either its Contributions or its Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, "control" means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights to
grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter the
recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty, or
limitations of liability) contained within the Source Code Form of the
Covered Software, except that You may alter any license notices to the
extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute,
judicial order, or regulation then You must: (a) comply with the terms of
this License to the maximum extent possible; and (b) describe the
limitations and the code they affect. Such description must be placed in a
text file included with all distributions of the Covered Software under
this License. Except to the extent prohibited by statute or regulation,
such description must be sufficiently detailed for a recipient of ordinary
skill to be able to understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing
basis, if such Contributor fails to notify You of the non-compliance by
some reasonable means prior to 60 days after You have come back into
compliance. Moreover, Your grants from a particular Contributor are
reinstated on an ongoing basis if such Contributor notifies You of the
non-compliance by some reasonable means, this is the first time You have
received notice of non-compliance with this License from such
Contributor, and You become compliant prior to 30 days after Your receipt
of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an "as is" basis,
without warranty of any kind, either expressed, implied, or statutory,
including, without limitation, warranties that the Covered Software is free
of defects, merchantable, fit for a particular purpose or non-infringing.
The entire risk as to the quality and performance of the Covered Software
is with You. Should any Covered Software prove defective in any respect,
You (not any Contributor) assume the cost of any necessary servicing,
repair, or correction. This disclaimer of warranty constitutes an essential
part of this License. No use of any Covered Software is authorized under
this License except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from
such party's negligence to the extent applicable law prohibits such
limitation. Some jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and limitation may
not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts
of a jurisdiction where the defendant maintains its principal place of
business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions. Nothing
in this Section shall prevent a party's ability to bring cross-claims or
counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides that
the language of a contract shall be construed against the drafter shall not
be used to construe this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses If You choose to distribute Source Code Form that is
Incompatible With Secondary Licenses under the terms of this version of
the License, the notice described in Exhibit B of this License must be
attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file,
then You may include the notice in a location (such as a LICENSE file in a
relevant directory) where a recipient would be likely to look for such a
notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
This Source Code Form is "Incompatible
With Secondary Licenses", as defined by
the Mozilla Public License, v. 2.0.

View file

@ -1,9 +0,0 @@
// Package rootcerts contains functions to aid in loading CA certificates for
// TLS connections.
//
// In addition, its default behavior on Darwin works around an open issue [1]
// in Go's crypto/x509 that prevents certicates from being loaded from the
// System or Login keychains.
//
// [1] https://github.com/golang/go/issues/14514
package rootcerts

View file

@ -1,103 +0,0 @@
package rootcerts
import (
"crypto/tls"
"crypto/x509"
"fmt"
"io/ioutil"
"os"
"path/filepath"
)
// Config determines where LoadCACerts will load certificates from. When both
// CAFile and CAPath are blank, this library's functions will either load
// system roots explicitly and return them, or set the CertPool to nil to allow
// Go's standard library to load system certs.
type Config struct {
// CAFile is a path to a PEM-encoded certificate file or bundle. Takes
// precedence over CAPath.
CAFile string
// CAPath is a path to a directory populated with PEM-encoded certificates.
CAPath string
}
// ConfigureTLS sets up the RootCAs on the provided tls.Config based on the
// Config specified.
func ConfigureTLS(t *tls.Config, c *Config) error {
if t == nil {
return nil
}
pool, err := LoadCACerts(c)
if err != nil {
return err
}
t.RootCAs = pool
return nil
}
// LoadCACerts loads a CertPool based on the Config specified.
func LoadCACerts(c *Config) (*x509.CertPool, error) {
if c == nil {
c = &Config{}
}
if c.CAFile != "" {
return LoadCAFile(c.CAFile)
}
if c.CAPath != "" {
return LoadCAPath(c.CAPath)
}
return LoadSystemCAs()
}
// LoadCAFile loads a single PEM-encoded file from the path specified.
func LoadCAFile(caFile string) (*x509.CertPool, error) {
pool := x509.NewCertPool()
pem, err := ioutil.ReadFile(caFile)
if err != nil {
return nil, fmt.Errorf("Error loading CA File: %s", err)
}
ok := pool.AppendCertsFromPEM(pem)
if !ok {
return nil, fmt.Errorf("Error loading CA File: Couldn't parse PEM in: %s", caFile)
}
return pool, nil
}
// LoadCAPath walks the provided path and loads all certificates encounted into
// a pool.
func LoadCAPath(caPath string) (*x509.CertPool, error) {
pool := x509.NewCertPool()
walkFn := func(path string, info os.FileInfo, err error) error {
if err != nil {
return err
}
if info.IsDir() {
return nil
}
pem, err := ioutil.ReadFile(path)
if err != nil {
return fmt.Errorf("Error loading file from CAPath: %s", err)
}
ok := pool.AppendCertsFromPEM(pem)
if !ok {
return fmt.Errorf("Error loading CA Path: Couldn't parse PEM in: %s", path)
}
return nil
}
err := filepath.Walk(caPath, walkFn)
if err != nil {
return nil, err
}
return pool, nil
}

View file

@ -1,12 +0,0 @@
// +build !darwin
package rootcerts
import "crypto/x509"
// LoadSystemCAs does nothing on non-Darwin systems. We return nil so that
// default behavior of standard TLS config libraries is triggered, which is to
// load system certs.
func LoadSystemCAs() (*x509.CertPool, error) {
return nil, nil
}

View file

@ -1,48 +0,0 @@
package rootcerts
import (
"crypto/x509"
"os/exec"
"path"
"github.com/mitchellh/go-homedir"
)
// LoadSystemCAs has special behavior on Darwin systems to work around
func LoadSystemCAs() (*x509.CertPool, error) {
pool := x509.NewCertPool()
for _, keychain := range certKeychains() {
err := addCertsFromKeychain(pool, keychain)
if err != nil {
return nil, err
}
}
return pool, nil
}
func addCertsFromKeychain(pool *x509.CertPool, keychain string) error {
cmd := exec.Command("/usr/bin/security", "find-certificate", "-a", "-p", keychain)
data, err := cmd.Output()
if err != nil {
return err
}
pool.AppendCertsFromPEM(data)
return nil
}
func certKeychains() []string {
keychains := []string{
"/System/Library/Keychains/SystemRootCertificates.keychain",
"/Library/Keychains/System.keychain",
}
home, err := homedir.Dir()
if err == nil {
loginKeychain := path.Join(home, "Library", "Keychains", "login.keychain")
keychains = append(keychains, loginKeychain)
}
return keychains
}

View file

@ -1,354 +0,0 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

View file

@ -1,180 +0,0 @@
package coordinate
import (
"fmt"
"math"
"sort"
"sync"
"time"
)
// Client manages the estimated network coordinate for a given node, and adjusts
// it as the node observes round trip times and estimated coordinates from other
// nodes. The core algorithm is based on Vivaldi, see the documentation for Config
// for more details.
type Client struct {
// coord is the current estimate of the client's network coordinate.
coord *Coordinate
// origin is a coordinate sitting at the origin.
origin *Coordinate
// config contains the tuning parameters that govern the performance of
// the algorithm.
config *Config
// adjustmentIndex is the current index into the adjustmentSamples slice.
adjustmentIndex uint
// adjustment is used to store samples for the adjustment calculation.
adjustmentSamples []float64
// latencyFilterSamples is used to store the last several RTT samples,
// keyed by node name. We will use the config's LatencyFilterSamples
// value to determine how many samples we keep, per node.
latencyFilterSamples map[string][]float64
// mutex enables safe concurrent access to the client.
mutex sync.RWMutex
}
// NewClient creates a new Client and verifies the configuration is valid.
func NewClient(config *Config) (*Client, error) {
if !(config.Dimensionality > 0) {
return nil, fmt.Errorf("dimensionality must be >0")
}
return &Client{
coord: NewCoordinate(config),
origin: NewCoordinate(config),
config: config,
adjustmentIndex: 0,
adjustmentSamples: make([]float64, config.AdjustmentWindowSize),
latencyFilterSamples: make(map[string][]float64),
}, nil
}
// GetCoordinate returns a copy of the coordinate for this client.
func (c *Client) GetCoordinate() *Coordinate {
c.mutex.RLock()
defer c.mutex.RUnlock()
return c.coord.Clone()
}
// SetCoordinate forces the client's coordinate to a known state.
func (c *Client) SetCoordinate(coord *Coordinate) {
c.mutex.Lock()
defer c.mutex.Unlock()
c.coord = coord.Clone()
}
// ForgetNode removes any client state for the given node.
func (c *Client) ForgetNode(node string) {
c.mutex.Lock()
defer c.mutex.Unlock()
delete(c.latencyFilterSamples, node)
}
// latencyFilter applies a simple moving median filter with a new sample for
// a node. This assumes that the mutex has been locked already.
func (c *Client) latencyFilter(node string, rttSeconds float64) float64 {
samples, ok := c.latencyFilterSamples[node]
if !ok {
samples = make([]float64, 0, c.config.LatencyFilterSize)
}
// Add the new sample and trim the list, if needed.
samples = append(samples, rttSeconds)
if len(samples) > int(c.config.LatencyFilterSize) {
samples = samples[1:]
}
c.latencyFilterSamples[node] = samples
// Sort a copy of the samples and return the median.
sorted := make([]float64, len(samples))
copy(sorted, samples)
sort.Float64s(sorted)
return sorted[len(sorted)/2]
}
// updateVivialdi updates the Vivaldi portion of the client's coordinate. This
// assumes that the mutex has been locked already.
func (c *Client) updateVivaldi(other *Coordinate, rttSeconds float64) {
const zeroThreshold = 1.0e-6
dist := c.coord.DistanceTo(other).Seconds()
if rttSeconds < zeroThreshold {
rttSeconds = zeroThreshold
}
wrongness := math.Abs(dist-rttSeconds) / rttSeconds
totalError := c.coord.Error + other.Error
if totalError < zeroThreshold {
totalError = zeroThreshold
}
weight := c.coord.Error / totalError
c.coord.Error = c.config.VivaldiCE*weight*wrongness + c.coord.Error*(1.0-c.config.VivaldiCE*weight)
if c.coord.Error > c.config.VivaldiErrorMax {
c.coord.Error = c.config.VivaldiErrorMax
}
delta := c.config.VivaldiCC * weight
force := delta * (rttSeconds - dist)
c.coord = c.coord.ApplyForce(c.config, force, other)
}
// updateAdjustment updates the adjustment portion of the client's coordinate, if
// the feature is enabled. This assumes that the mutex has been locked already.
func (c *Client) updateAdjustment(other *Coordinate, rttSeconds float64) {
if c.config.AdjustmentWindowSize == 0 {
return
}
// Note that the existing adjustment factors don't figure in to this
// calculation so we use the raw distance here.
dist := c.coord.rawDistanceTo(other)
c.adjustmentSamples[c.adjustmentIndex] = rttSeconds - dist
c.adjustmentIndex = (c.adjustmentIndex + 1) % c.config.AdjustmentWindowSize
sum := 0.0
for _, sample := range c.adjustmentSamples {
sum += sample
}
c.coord.Adjustment = sum / (2.0 * float64(c.config.AdjustmentWindowSize))
}
// updateGravity applies a small amount of gravity to pull coordinates towards
// the center of the coordinate system to combat drift. This assumes that the
// mutex is locked already.
func (c *Client) updateGravity() {
dist := c.origin.DistanceTo(c.coord).Seconds()
force := -1.0 * math.Pow(dist/c.config.GravityRho, 2.0)
c.coord = c.coord.ApplyForce(c.config, force, c.origin)
}
// Update takes other, a coordinate for another node, and rtt, a round trip
// time observation for a ping to that node, and updates the estimated position of
// the client's coordinate. Returns the updated coordinate.
func (c *Client) Update(node string, other *Coordinate, rtt time.Duration) *Coordinate {
c.mutex.Lock()
defer c.mutex.Unlock()
rttSeconds := c.latencyFilter(node, rtt.Seconds())
c.updateVivaldi(other, rttSeconds)
c.updateAdjustment(other, rttSeconds)
c.updateGravity()
return c.coord.Clone()
}
// DistanceTo returns the estimated RTT from the client's coordinate to other, the
// coordinate for another node.
func (c *Client) DistanceTo(other *Coordinate) time.Duration {
c.mutex.RLock()
defer c.mutex.RUnlock()
return c.coord.DistanceTo(other)
}

View file

@ -1,70 +0,0 @@
package coordinate
// Config is used to set the parameters of the Vivaldi-based coordinate mapping
// algorithm.
//
// The following references are called out at various points in the documentation
// here:
//
// [1] Dabek, Frank, et al. "Vivaldi: A decentralized network coordinate system."
// ACM SIGCOMM Computer Communication Review. Vol. 34. No. 4. ACM, 2004.
// [2] Ledlie, Jonathan, Paul Gardner, and Margo I. Seltzer. "Network Coordinates
// in the Wild." NSDI. Vol. 7. 2007.
// [3] Lee, Sanghwan, et al. "On suitability of Euclidean embedding for
// host-based network coordinate systems." Networking, IEEE/ACM Transactions
// on 18.1 (2010): 27-40.
type Config struct {
// The dimensionality of the coordinate system. As discussed in [2], more
// dimensions improves the accuracy of the estimates up to a point. Per [2]
// we chose 8 dimensions plus a non-Euclidean height.
Dimensionality uint
// VivaldiErrorMax is the default error value when a node hasn't yet made
// any observations. It also serves as an upper limit on the error value in
// case observations cause the error value to increase without bound.
VivaldiErrorMax float64
// VivaldiCE is a tuning factor that controls the maximum impact an
// observation can have on a node's confidence. See [1] for more details.
VivaldiCE float64
// VivaldiCC is a tuning factor that controls the maximum impact an
// observation can have on a node's coordinate. See [1] for more details.
VivaldiCC float64
// AdjustmentWindowSize is a tuning factor that determines how many samples
// we retain to calculate the adjustment factor as discussed in [3]. Setting
// this to zero disables this feature.
AdjustmentWindowSize uint
// HeightMin is the minimum value of the height parameter. Since this
// always must be positive, it will introduce a small amount error, so
// the chosen value should be relatively small compared to "normal"
// coordinates.
HeightMin float64
// LatencyFilterSamples is the maximum number of samples that are retained
// per node, in order to compute a median. The intent is to ride out blips
// but still keep the delay low, since our time to probe any given node is
// pretty infrequent. See [2] for more details.
LatencyFilterSize uint
// GravityRho is a tuning factor that sets how much gravity has an effect
// to try to re-center coordinates. See [2] for more details.
GravityRho float64
}
// DefaultConfig returns a Config that has some default values suitable for
// basic testing of the algorithm, but not tuned to any particular type of cluster.
func DefaultConfig() *Config {
return &Config{
Dimensionality: 8,
VivaldiErrorMax: 1.5,
VivaldiCE: 0.25,
VivaldiCC: 0.25,
AdjustmentWindowSize: 20,
HeightMin: 10.0e-6,
LatencyFilterSize: 3,
GravityRho: 150.0,
}
}

View file

@ -1,183 +0,0 @@
package coordinate
import (
"math"
"math/rand"
"time"
)
// Coordinate is a specialized structure for holding network coordinates for the
// Vivaldi-based coordinate mapping algorithm. All of the fields should be public
// to enable this to be serialized. All values in here are in units of seconds.
type Coordinate struct {
// Vec is the Euclidean portion of the coordinate. This is used along
// with the other fields to provide an overall distance estimate. The
// units here are seconds.
Vec []float64
// Err reflects the confidence in the given coordinate and is updated
// dynamically by the Vivaldi Client. This is dimensionless.
Error float64
// Adjustment is a distance offset computed based on a calculation over
// observations from all other nodes over a fixed window and is updated
// dynamically by the Vivaldi Client. The units here are seconds.
Adjustment float64
// Height is a distance offset that accounts for non-Euclidean effects
// which model the access links from nodes to the core Internet. The access
// links are usually set by bandwidth and congestion, and the core links
// usually follow distance based on geography.
Height float64
}
const (
// secondsToNanoseconds is used to convert float seconds to nanoseconds.
secondsToNanoseconds = 1.0e9
// zeroThreshold is used to decide if two coordinates are on top of each
// other.
zeroThreshold = 1.0e-6
)
// ErrDimensionalityConflict will be panic-d if you try to perform operations
// with incompatible dimensions.
type DimensionalityConflictError struct{}
// Adds the error interface.
func (e DimensionalityConflictError) Error() string {
return "coordinate dimensionality does not match"
}
// NewCoordinate creates a new coordinate at the origin, using the given config
// to supply key initial values.
func NewCoordinate(config *Config) *Coordinate {
return &Coordinate{
Vec: make([]float64, config.Dimensionality),
Error: config.VivaldiErrorMax,
Adjustment: 0.0,
Height: config.HeightMin,
}
}
// Clone creates an independent copy of this coordinate.
func (c *Coordinate) Clone() *Coordinate {
vec := make([]float64, len(c.Vec))
copy(vec, c.Vec)
return &Coordinate{
Vec: vec,
Error: c.Error,
Adjustment: c.Adjustment,
Height: c.Height,
}
}
// IsCompatibleWith checks to see if the two coordinates are compatible
// dimensionally. If this returns true then you are guaranteed to not get
// any runtime errors operating on them.
func (c *Coordinate) IsCompatibleWith(other *Coordinate) bool {
return len(c.Vec) == len(other.Vec)
}
// ApplyForce returns the result of applying the force from the direction of the
// other coordinate.
func (c *Coordinate) ApplyForce(config *Config, force float64, other *Coordinate) *Coordinate {
if !c.IsCompatibleWith(other) {
panic(DimensionalityConflictError{})
}
ret := c.Clone()
unit, mag := unitVectorAt(c.Vec, other.Vec)
ret.Vec = add(ret.Vec, mul(unit, force))
if mag > zeroThreshold {
ret.Height = (ret.Height+other.Height)*force/mag + ret.Height
ret.Height = math.Max(ret.Height, config.HeightMin)
}
return ret
}
// DistanceTo returns the distance between this coordinate and the other
// coordinate, including adjustments.
func (c *Coordinate) DistanceTo(other *Coordinate) time.Duration {
if !c.IsCompatibleWith(other) {
panic(DimensionalityConflictError{})
}
dist := c.rawDistanceTo(other)
adjustedDist := dist + c.Adjustment + other.Adjustment
if adjustedDist > 0.0 {
dist = adjustedDist
}
return time.Duration(dist * secondsToNanoseconds)
}
// rawDistanceTo returns the Vivaldi distance between this coordinate and the
// other coordinate in seconds, not including adjustments. This assumes the
// dimensions have already been checked to be compatible.
func (c *Coordinate) rawDistanceTo(other *Coordinate) float64 {
return magnitude(diff(c.Vec, other.Vec)) + c.Height + other.Height
}
// add returns the sum of vec1 and vec2. This assumes the dimensions have
// already been checked to be compatible.
func add(vec1 []float64, vec2 []float64) []float64 {
ret := make([]float64, len(vec1))
for i, _ := range ret {
ret[i] = vec1[i] + vec2[i]
}
return ret
}
// diff returns the difference between the vec1 and vec2. This assumes the
// dimensions have already been checked to be compatible.
func diff(vec1 []float64, vec2 []float64) []float64 {
ret := make([]float64, len(vec1))
for i, _ := range ret {
ret[i] = vec1[i] - vec2[i]
}
return ret
}
// mul returns vec multiplied by a scalar factor.
func mul(vec []float64, factor float64) []float64 {
ret := make([]float64, len(vec))
for i, _ := range vec {
ret[i] = vec[i] * factor
}
return ret
}
// magnitude computes the magnitude of the vec.
func magnitude(vec []float64) float64 {
sum := 0.0
for i, _ := range vec {
sum += vec[i] * vec[i]
}
return math.Sqrt(sum)
}
// unitVectorAt returns a unit vector pointing at vec1 from vec2. If the two
// positions are the same then a random unit vector is returned. We also return
// the distance between the points for use in the later height calculation.
func unitVectorAt(vec1 []float64, vec2 []float64) ([]float64, float64) {
ret := diff(vec1, vec2)
// If the coordinates aren't on top of each other we can normalize.
if mag := magnitude(ret); mag > zeroThreshold {
return mul(ret, 1.0/mag), mag
}
// Otherwise, just return a random unit vector.
for i, _ := range ret {
ret[i] = rand.Float64() - 0.5
}
if mag := magnitude(ret); mag > zeroThreshold {
return mul(ret, 1.0/mag), 0.0
}
// And finally just give up and make a unit vector along the first
// dimension. This should be exceedingly rare.
ret = make([]float64, len(ret))
ret[0] = 1.0
return ret, 0.0
}

View file

@ -1,187 +0,0 @@
package coordinate
import (
"fmt"
"math"
"math/rand"
"time"
)
// GenerateClients returns a slice with nodes number of clients, all with the
// given config.
func GenerateClients(nodes int, config *Config) ([]*Client, error) {
clients := make([]*Client, nodes)
for i, _ := range clients {
client, err := NewClient(config)
if err != nil {
return nil, err
}
clients[i] = client
}
return clients, nil
}
// GenerateLine returns a truth matrix as if all the nodes are in a straight linke
// with the given spacing between them.
func GenerateLine(nodes int, spacing time.Duration) [][]time.Duration {
truth := make([][]time.Duration, nodes)
for i := range truth {
truth[i] = make([]time.Duration, nodes)
}
for i := 0; i < nodes; i++ {
for j := i + 1; j < nodes; j++ {
rtt := time.Duration(j-i) * spacing
truth[i][j], truth[j][i] = rtt, rtt
}
}
return truth
}
// GenerateGrid returns a truth matrix as if all the nodes are in a two dimensional
// grid with the given spacing between them.
func GenerateGrid(nodes int, spacing time.Duration) [][]time.Duration {
truth := make([][]time.Duration, nodes)
for i := range truth {
truth[i] = make([]time.Duration, nodes)
}
n := int(math.Sqrt(float64(nodes)))
for i := 0; i < nodes; i++ {
for j := i + 1; j < nodes; j++ {
x1, y1 := float64(i%n), float64(i/n)
x2, y2 := float64(j%n), float64(j/n)
dx, dy := x2-x1, y2-y1
dist := math.Sqrt(dx*dx + dy*dy)
rtt := time.Duration(dist * float64(spacing))
truth[i][j], truth[j][i] = rtt, rtt
}
}
return truth
}
// GenerateSplit returns a truth matrix as if half the nodes are close together in
// one location and half the nodes are close together in another. The lan factor
// is used to separate the nodes locally and the wan factor represents the split
// between the two sides.
func GenerateSplit(nodes int, lan time.Duration, wan time.Duration) [][]time.Duration {
truth := make([][]time.Duration, nodes)
for i := range truth {
truth[i] = make([]time.Duration, nodes)
}
split := nodes / 2
for i := 0; i < nodes; i++ {
for j := i + 1; j < nodes; j++ {
rtt := lan
if (i <= split && j > split) || (i > split && j <= split) {
rtt += wan
}
truth[i][j], truth[j][i] = rtt, rtt
}
}
return truth
}
// GenerateCircle returns a truth matrix for a set of nodes, evenly distributed
// around a circle with the given radius. The first node is at the "center" of the
// circle because it's equidistant from all the other nodes, but we place it at
// double the radius, so it should show up above all the other nodes in height.
func GenerateCircle(nodes int, radius time.Duration) [][]time.Duration {
truth := make([][]time.Duration, nodes)
for i := range truth {
truth[i] = make([]time.Duration, nodes)
}
for i := 0; i < nodes; i++ {
for j := i + 1; j < nodes; j++ {
var rtt time.Duration
if i == 0 {
rtt = 2 * radius
} else {
t1 := 2.0 * math.Pi * float64(i) / float64(nodes)
x1, y1 := math.Cos(t1), math.Sin(t1)
t2 := 2.0 * math.Pi * float64(j) / float64(nodes)
x2, y2 := math.Cos(t2), math.Sin(t2)
dx, dy := x2-x1, y2-y1
dist := math.Sqrt(dx*dx + dy*dy)
rtt = time.Duration(dist * float64(radius))
}
truth[i][j], truth[j][i] = rtt, rtt
}
}
return truth
}
// GenerateRandom returns a truth matrix for a set of nodes with normally
// distributed delays, with the given mean and deviation. The RNG is re-seeded
// so you always get the same matrix for a given size.
func GenerateRandom(nodes int, mean time.Duration, deviation time.Duration) [][]time.Duration {
rand.Seed(1)
truth := make([][]time.Duration, nodes)
for i := range truth {
truth[i] = make([]time.Duration, nodes)
}
for i := 0; i < nodes; i++ {
for j := i + 1; j < nodes; j++ {
rttSeconds := rand.NormFloat64()*deviation.Seconds() + mean.Seconds()
rtt := time.Duration(rttSeconds * secondsToNanoseconds)
truth[i][j], truth[j][i] = rtt, rtt
}
}
return truth
}
// Simulate runs the given number of cycles using the given list of clients and
// truth matrix. On each cycle, each client will pick a random node and observe
// the truth RTT, updating its coordinate estimate. The RNG is re-seeded for
// each simulation run to get deterministic results (for this algorithm and the
// underlying algorithm which will use random numbers for position vectors when
// starting out with everything at the origin).
func Simulate(clients []*Client, truth [][]time.Duration, cycles int) {
rand.Seed(1)
nodes := len(clients)
for cycle := 0; cycle < cycles; cycle++ {
for i, _ := range clients {
if j := rand.Intn(nodes); j != i {
c := clients[j].GetCoordinate()
rtt := truth[i][j]
node := fmt.Sprintf("node_%d", j)
clients[i].Update(node, c, rtt)
}
}
}
}
// Stats is returned from the Evaluate function with a summary of the algorithm
// performance.
type Stats struct {
ErrorMax float64
ErrorAvg float64
}
// Evaluate uses the coordinates of the given clients to calculate estimated
// distances and compares them with the given truth matrix, returning summary
// stats.
func Evaluate(clients []*Client, truth [][]time.Duration) (stats Stats) {
nodes := len(clients)
count := 0
for i := 0; i < nodes; i++ {
for j := i + 1; j < nodes; j++ {
est := clients[i].DistanceTo(clients[j].GetCoordinate()).Seconds()
actual := truth[i][j].Seconds()
error := math.Abs(est-actual) / actual
stats.ErrorMax = math.Max(stats.ErrorMax, error)
stats.ErrorAvg += error
count += 1
}
}
stats.ErrorAvg /= float64(count)
fmt.Printf("Error avg=%9.6f max=%9.6f\n", stats.ErrorAvg, stats.ErrorMax)
return
}

View file

@ -1,2 +0,0 @@
Name: serf
Copyright: Hashicorp 2013

View file

@ -1,10 +0,0 @@
# Proprietary License
This license is temporary while a more official one is drafted. However,
this should make it clear:
The text contents of this website are MPL 2.0 licensed.
The design contents of this website are proprietary and may not be reproduced
or reused in any way other than to run the website locally. The license for
the design is owned solely by HashiCorp, Inc.

View file

@ -1,10 +0,0 @@
# Proprietary License
This license is temporary while a more official one is drafted. However,
this should make it clear:
* The text contents of this website are MPL 2.0 licensed.
* The design contents of this website are proprietary and may not be reproduced
or reused in any way other than to run the Serf website locally. The license
for the design is owned solely by HashiCorp, Inc.