Opentracing support
This commit is contained in:
parent
8394549857
commit
30ffba78e6
272 changed files with 44352 additions and 63 deletions
99
vendor/github.com/openzipkin/zipkin-go-opentracing/sample.go
generated
vendored
Normal file
99
vendor/github.com/openzipkin/zipkin-go-opentracing/sample.go
generated
vendored
Normal file
|
@ -0,0 +1,99 @@
|
|||
package zipkintracer
|
||||
|
||||
import (
|
||||
"math"
|
||||
"math/rand"
|
||||
"sync"
|
||||
"time"
|
||||
)
|
||||
|
||||
// Sampler functions return if a Zipkin span should be sampled, based on its
|
||||
// traceID.
|
||||
type Sampler func(id uint64) bool
|
||||
|
||||
func neverSample(_ uint64) bool { return false }
|
||||
|
||||
func alwaysSample(_ uint64) bool { return true }
|
||||
|
||||
// ModuloSampler provides a typical OpenTracing type Sampler.
|
||||
func ModuloSampler(mod uint64) Sampler {
|
||||
if mod < 2 {
|
||||
return alwaysSample
|
||||
}
|
||||
return func(id uint64) bool {
|
||||
return (id % mod) == 0
|
||||
}
|
||||
}
|
||||
|
||||
// NewBoundarySampler is appropriate for high-traffic instrumentation who
|
||||
// provision random trace ids, and make the sampling decision only once.
|
||||
// It defends against nodes in the cluster selecting exactly the same ids.
|
||||
func NewBoundarySampler(rate float64, salt int64) Sampler {
|
||||
if rate <= 0 {
|
||||
return neverSample
|
||||
}
|
||||
if rate >= 1.0 {
|
||||
return alwaysSample
|
||||
}
|
||||
var (
|
||||
boundary = int64(rate * 10000)
|
||||
usalt = uint64(salt)
|
||||
)
|
||||
return func(id uint64) bool {
|
||||
return int64(math.Abs(float64(id^usalt)))%10000 < boundary
|
||||
}
|
||||
}
|
||||
|
||||
// NewCountingSampler is appropriate for low-traffic instrumentation or
|
||||
// those who do not provision random trace ids. It is not appropriate for
|
||||
// collectors as the sampling decision isn't idempotent (consistent based
|
||||
// on trace id).
|
||||
func NewCountingSampler(rate float64) Sampler {
|
||||
if rate <= 0 {
|
||||
return neverSample
|
||||
}
|
||||
if rate >= 1.0 {
|
||||
return alwaysSample
|
||||
}
|
||||
var (
|
||||
i = 0
|
||||
outOf100 = int(rate*100 + math.Copysign(0.5, rate*100)) // for rounding float to int conversion instead of truncation
|
||||
decisions = randomBitSet(100, outOf100, rand.New(rand.NewSource(time.Now().UnixNano())))
|
||||
mtx = &sync.Mutex{}
|
||||
)
|
||||
|
||||
return func(_ uint64) bool {
|
||||
mtx.Lock()
|
||||
defer mtx.Unlock()
|
||||
result := decisions[i]
|
||||
i++
|
||||
if i == 100 {
|
||||
i = 0
|
||||
}
|
||||
return result
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Reservoir sampling algorithm borrowed from Stack Overflow.
|
||||
*
|
||||
* http://stackoverflow.com/questions/12817946/generate-a-random-bitset-with-n-1s
|
||||
*/
|
||||
func randomBitSet(size int, cardinality int, rnd *rand.Rand) []bool {
|
||||
result := make([]bool, size)
|
||||
chosen := make([]int, cardinality)
|
||||
var i int
|
||||
for i = 0; i < cardinality; i++ {
|
||||
chosen[i] = i
|
||||
result[i] = true
|
||||
}
|
||||
for ; i < size; i++ {
|
||||
j := rnd.Intn(i + 1)
|
||||
if j < cardinality {
|
||||
result[chosen[j]] = false
|
||||
result[i] = true
|
||||
chosen[j] = i
|
||||
}
|
||||
}
|
||||
return result
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue