1
0
Fork 0

Re-think integration vendoring

- remove docker/docker from  Traefik vendor (unused)
- use `ignore` for all Traefik vendor in integration glide.
- defined only integration specific version of the dependencies.
This commit is contained in:
Ludovic Fernandez 2017-07-03 11:53:31 +02:00 committed by GitHub
parent 121c057b90
commit 22aceec426
1750 changed files with 5786 additions and 552456 deletions

View file

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2014 Simon Eskildsen
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View file

@ -1,252 +0,0 @@
package logrus
import (
"bytes"
"fmt"
"io"
"os"
"time"
)
// An entry is the final or intermediate Logrus logging entry. It contains all
// the fields passed with WithField{,s}. It's finally logged when Debug, Info,
// Warn, Error, Fatal or Panic is called on it. These objects can be reused and
// passed around as much as you wish to avoid field duplication.
type Entry struct {
Logger *Logger
// Contains all the fields set by the user.
Data Fields
// Time at which the log entry was created
Time time.Time
// Level the log entry was logged at: Debug, Info, Warn, Error, Fatal or Panic
Level Level
// Message passed to Debug, Info, Warn, Error, Fatal or Panic
Message string
}
func NewEntry(logger *Logger) *Entry {
return &Entry{
Logger: logger,
// Default is three fields, give a little extra room
Data: make(Fields, 5),
}
}
// Returns a reader for the entry, which is a proxy to the formatter.
func (entry *Entry) Reader() (*bytes.Buffer, error) {
serialized, err := entry.Logger.Formatter.Format(entry)
return bytes.NewBuffer(serialized), err
}
// Returns the string representation from the reader and ultimately the
// formatter.
func (entry *Entry) String() (string, error) {
reader, err := entry.Reader()
if err != nil {
return "", err
}
return reader.String(), err
}
// Add a single field to the Entry.
func (entry *Entry) WithField(key string, value interface{}) *Entry {
return entry.WithFields(Fields{key: value})
}
// Add a map of fields to the Entry.
func (entry *Entry) WithFields(fields Fields) *Entry {
data := Fields{}
for k, v := range entry.Data {
data[k] = v
}
for k, v := range fields {
data[k] = v
}
return &Entry{Logger: entry.Logger, Data: data}
}
func (entry *Entry) log(level Level, msg string) {
entry.Time = time.Now()
entry.Level = level
entry.Message = msg
if err := entry.Logger.Hooks.Fire(level, entry); err != nil {
entry.Logger.mu.Lock()
fmt.Fprintf(os.Stderr, "Failed to fire hook: %v\n", err)
entry.Logger.mu.Unlock()
}
reader, err := entry.Reader()
if err != nil {
entry.Logger.mu.Lock()
fmt.Fprintf(os.Stderr, "Failed to obtain reader, %v\n", err)
entry.Logger.mu.Unlock()
}
entry.Logger.mu.Lock()
defer entry.Logger.mu.Unlock()
_, err = io.Copy(entry.Logger.Out, reader)
if err != nil {
fmt.Fprintf(os.Stderr, "Failed to write to log, %v\n", err)
}
// To avoid Entry#log() returning a value that only would make sense for
// panic() to use in Entry#Panic(), we avoid the allocation by checking
// directly here.
if level <= PanicLevel {
panic(entry)
}
}
func (entry *Entry) Debug(args ...interface{}) {
if entry.Logger.Level >= DebugLevel {
entry.log(DebugLevel, fmt.Sprint(args...))
}
}
func (entry *Entry) Print(args ...interface{}) {
entry.Info(args...)
}
func (entry *Entry) Info(args ...interface{}) {
if entry.Logger.Level >= InfoLevel {
entry.log(InfoLevel, fmt.Sprint(args...))
}
}
func (entry *Entry) Warn(args ...interface{}) {
if entry.Logger.Level >= WarnLevel {
entry.log(WarnLevel, fmt.Sprint(args...))
}
}
func (entry *Entry) Warning(args ...interface{}) {
entry.Warn(args...)
}
func (entry *Entry) Error(args ...interface{}) {
if entry.Logger.Level >= ErrorLevel {
entry.log(ErrorLevel, fmt.Sprint(args...))
}
}
func (entry *Entry) Fatal(args ...interface{}) {
if entry.Logger.Level >= FatalLevel {
entry.log(FatalLevel, fmt.Sprint(args...))
}
os.Exit(1)
}
func (entry *Entry) Panic(args ...interface{}) {
if entry.Logger.Level >= PanicLevel {
entry.log(PanicLevel, fmt.Sprint(args...))
}
panic(fmt.Sprint(args...))
}
// Entry Printf family functions
func (entry *Entry) Debugf(format string, args ...interface{}) {
if entry.Logger.Level >= DebugLevel {
entry.Debug(fmt.Sprintf(format, args...))
}
}
func (entry *Entry) Infof(format string, args ...interface{}) {
if entry.Logger.Level >= InfoLevel {
entry.Info(fmt.Sprintf(format, args...))
}
}
func (entry *Entry) Printf(format string, args ...interface{}) {
entry.Infof(format, args...)
}
func (entry *Entry) Warnf(format string, args ...interface{}) {
if entry.Logger.Level >= WarnLevel {
entry.Warn(fmt.Sprintf(format, args...))
}
}
func (entry *Entry) Warningf(format string, args ...interface{}) {
entry.Warnf(format, args...)
}
func (entry *Entry) Errorf(format string, args ...interface{}) {
if entry.Logger.Level >= ErrorLevel {
entry.Error(fmt.Sprintf(format, args...))
}
}
func (entry *Entry) Fatalf(format string, args ...interface{}) {
if entry.Logger.Level >= FatalLevel {
entry.Fatal(fmt.Sprintf(format, args...))
}
}
func (entry *Entry) Panicf(format string, args ...interface{}) {
if entry.Logger.Level >= PanicLevel {
entry.Panic(fmt.Sprintf(format, args...))
}
}
// Entry Println family functions
func (entry *Entry) Debugln(args ...interface{}) {
if entry.Logger.Level >= DebugLevel {
entry.Debug(entry.sprintlnn(args...))
}
}
func (entry *Entry) Infoln(args ...interface{}) {
if entry.Logger.Level >= InfoLevel {
entry.Info(entry.sprintlnn(args...))
}
}
func (entry *Entry) Println(args ...interface{}) {
entry.Infoln(args...)
}
func (entry *Entry) Warnln(args ...interface{}) {
if entry.Logger.Level >= WarnLevel {
entry.Warn(entry.sprintlnn(args...))
}
}
func (entry *Entry) Warningln(args ...interface{}) {
entry.Warnln(args...)
}
func (entry *Entry) Errorln(args ...interface{}) {
if entry.Logger.Level >= ErrorLevel {
entry.Error(entry.sprintlnn(args...))
}
}
func (entry *Entry) Fatalln(args ...interface{}) {
if entry.Logger.Level >= FatalLevel {
entry.Fatal(entry.sprintlnn(args...))
}
}
func (entry *Entry) Panicln(args ...interface{}) {
if entry.Logger.Level >= PanicLevel {
entry.Panic(entry.sprintlnn(args...))
}
}
// Sprintlnn => Sprint no newline. This is to get the behavior of how
// fmt.Sprintln where spaces are always added between operands, regardless of
// their type. Instead of vendoring the Sprintln implementation to spare a
// string allocation, we do the simplest thing.
func (entry *Entry) sprintlnn(args ...interface{}) string {
msg := fmt.Sprintln(args...)
return msg[:len(msg)-1]
}

View file

@ -1,188 +0,0 @@
package logrus
import (
"io"
)
var (
// std is the name of the standard logger in stdlib `log`
std = New()
)
func StandardLogger() *Logger {
return std
}
// SetOutput sets the standard logger output.
func SetOutput(out io.Writer) {
std.mu.Lock()
defer std.mu.Unlock()
std.Out = out
}
// SetFormatter sets the standard logger formatter.
func SetFormatter(formatter Formatter) {
std.mu.Lock()
defer std.mu.Unlock()
std.Formatter = formatter
}
// SetLevel sets the standard logger level.
func SetLevel(level Level) {
std.mu.Lock()
defer std.mu.Unlock()
std.Level = level
}
// GetLevel returns the standard logger level.
func GetLevel() Level {
std.mu.Lock()
defer std.mu.Unlock()
return std.Level
}
// AddHook adds a hook to the standard logger hooks.
func AddHook(hook Hook) {
std.mu.Lock()
defer std.mu.Unlock()
std.Hooks.Add(hook)
}
// WithField creates an entry from the standard logger and adds a field to
// it. If you want multiple fields, use `WithFields`.
//
// Note that it doesn't log until you call Debug, Print, Info, Warn, Fatal
// or Panic on the Entry it returns.
func WithField(key string, value interface{}) *Entry {
return std.WithField(key, value)
}
// WithFields creates an entry from the standard logger and adds multiple
// fields to it. This is simply a helper for `WithField`, invoking it
// once for each field.
//
// Note that it doesn't log until you call Debug, Print, Info, Warn, Fatal
// or Panic on the Entry it returns.
func WithFields(fields Fields) *Entry {
return std.WithFields(fields)
}
// Debug logs a message at level Debug on the standard logger.
func Debug(args ...interface{}) {
std.Debug(args...)
}
// Print logs a message at level Info on the standard logger.
func Print(args ...interface{}) {
std.Print(args...)
}
// Info logs a message at level Info on the standard logger.
func Info(args ...interface{}) {
std.Info(args...)
}
// Warn logs a message at level Warn on the standard logger.
func Warn(args ...interface{}) {
std.Warn(args...)
}
// Warning logs a message at level Warn on the standard logger.
func Warning(args ...interface{}) {
std.Warning(args...)
}
// Error logs a message at level Error on the standard logger.
func Error(args ...interface{}) {
std.Error(args...)
}
// Panic logs a message at level Panic on the standard logger.
func Panic(args ...interface{}) {
std.Panic(args...)
}
// Fatal logs a message at level Fatal on the standard logger.
func Fatal(args ...interface{}) {
std.Fatal(args...)
}
// Debugf logs a message at level Debug on the standard logger.
func Debugf(format string, args ...interface{}) {
std.Debugf(format, args...)
}
// Printf logs a message at level Info on the standard logger.
func Printf(format string, args ...interface{}) {
std.Printf(format, args...)
}
// Infof logs a message at level Info on the standard logger.
func Infof(format string, args ...interface{}) {
std.Infof(format, args...)
}
// Warnf logs a message at level Warn on the standard logger.
func Warnf(format string, args ...interface{}) {
std.Warnf(format, args...)
}
// Warningf logs a message at level Warn on the standard logger.
func Warningf(format string, args ...interface{}) {
std.Warningf(format, args...)
}
// Errorf logs a message at level Error on the standard logger.
func Errorf(format string, args ...interface{}) {
std.Errorf(format, args...)
}
// Panicf logs a message at level Panic on the standard logger.
func Panicf(format string, args ...interface{}) {
std.Panicf(format, args...)
}
// Fatalf logs a message at level Fatal on the standard logger.
func Fatalf(format string, args ...interface{}) {
std.Fatalf(format, args...)
}
// Debugln logs a message at level Debug on the standard logger.
func Debugln(args ...interface{}) {
std.Debugln(args...)
}
// Println logs a message at level Info on the standard logger.
func Println(args ...interface{}) {
std.Println(args...)
}
// Infoln logs a message at level Info on the standard logger.
func Infoln(args ...interface{}) {
std.Infoln(args...)
}
// Warnln logs a message at level Warn on the standard logger.
func Warnln(args ...interface{}) {
std.Warnln(args...)
}
// Warningln logs a message at level Warn on the standard logger.
func Warningln(args ...interface{}) {
std.Warningln(args...)
}
// Errorln logs a message at level Error on the standard logger.
func Errorln(args ...interface{}) {
std.Errorln(args...)
}
// Panicln logs a message at level Panic on the standard logger.
func Panicln(args ...interface{}) {
std.Panicln(args...)
}
// Fatalln logs a message at level Fatal on the standard logger.
func Fatalln(args ...interface{}) {
std.Fatalln(args...)
}

View file

@ -1,48 +0,0 @@
package logrus
import "time"
const DefaultTimestampFormat = time.RFC3339
// The Formatter interface is used to implement a custom Formatter. It takes an
// `Entry`. It exposes all the fields, including the default ones:
//
// * `entry.Data["msg"]`. The message passed from Info, Warn, Error ..
// * `entry.Data["time"]`. The timestamp.
// * `entry.Data["level"]. The level the entry was logged at.
//
// Any additional fields added with `WithField` or `WithFields` are also in
// `entry.Data`. Format is expected to return an array of bytes which are then
// logged to `logger.Out`.
type Formatter interface {
Format(*Entry) ([]byte, error)
}
// This is to not silently overwrite `time`, `msg` and `level` fields when
// dumping it. If this code wasn't there doing:
//
// logrus.WithField("level", 1).Info("hello")
//
// Would just silently drop the user provided level. Instead with this code
// it'll logged as:
//
// {"level": "info", "fields.level": 1, "msg": "hello", "time": "..."}
//
// It's not exported because it's still using Data in an opinionated way. It's to
// avoid code duplication between the two default formatters.
func prefixFieldClashes(data Fields) {
_, ok := data["time"]
if ok {
data["fields.time"] = data["time"]
}
_, ok = data["msg"]
if ok {
data["fields.msg"] = data["msg"]
}
_, ok = data["level"]
if ok {
data["fields.level"] = data["level"]
}
}

View file

@ -1,34 +0,0 @@
package logrus
// A hook to be fired when logging on the logging levels returned from
// `Levels()` on your implementation of the interface. Note that this is not
// fired in a goroutine or a channel with workers, you should handle such
// functionality yourself if your call is non-blocking and you don't wish for
// the logging calls for levels returned from `Levels()` to block.
type Hook interface {
Levels() []Level
Fire(*Entry) error
}
// Internal type for storing the hooks on a logger instance.
type levelHooks map[Level][]Hook
// Add a hook to an instance of logger. This is called with
// `log.Hooks.Add(new(MyHook))` where `MyHook` implements the `Hook` interface.
func (hooks levelHooks) Add(hook Hook) {
for _, level := range hook.Levels() {
hooks[level] = append(hooks[level], hook)
}
}
// Fire all the hooks for the passed level. Used by `entry.log` to fire
// appropriate hooks for a log entry.
func (hooks levelHooks) Fire(level Level, entry *Entry) error {
for _, hook := range hooks[level] {
if err := hook.Fire(entry); err != nil {
return err
}
}
return nil
}

View file

@ -1,40 +0,0 @@
package logrus
import (
"encoding/json"
"fmt"
)
type JSONFormatter struct {
// TimestampFormat sets the format used for marshaling timestamps.
TimestampFormat string
}
func (f *JSONFormatter) Format(entry *Entry) ([]byte, error) {
data := make(Fields, len(entry.Data)+3)
for k, v := range entry.Data {
switch v := v.(type) {
case error:
// Otherwise errors are ignored by `encoding/json`
// https://github.com/Sirupsen/logrus/issues/137
data[k] = v.Error()
default:
data[k] = v
}
}
prefixFieldClashes(data)
if f.TimestampFormat == "" {
f.TimestampFormat = DefaultTimestampFormat
}
data["time"] = entry.Time.Format(f.TimestampFormat)
data["msg"] = entry.Message
data["level"] = entry.Level.String()
serialized, err := json.Marshal(data)
if err != nil {
return nil, fmt.Errorf("Failed to marshal fields to JSON, %v", err)
}
return append(serialized, '\n'), nil
}

View file

@ -1,203 +0,0 @@
package logrus
import (
"io"
"os"
"sync"
)
type Logger struct {
// The logs are `io.Copy`'d to this in a mutex. It's common to set this to a
// file, or leave it default which is `os.Stdout`. You can also set this to
// something more adventorous, such as logging to Kafka.
Out io.Writer
// Hooks for the logger instance. These allow firing events based on logging
// levels and log entries. For example, to send errors to an error tracking
// service, log to StatsD or dump the core on fatal errors.
Hooks levelHooks
// All log entries pass through the formatter before logged to Out. The
// included formatters are `TextFormatter` and `JSONFormatter` for which
// TextFormatter is the default. In development (when a TTY is attached) it
// logs with colors, but to a file it wouldn't. You can easily implement your
// own that implements the `Formatter` interface, see the `README` or included
// formatters for examples.
Formatter Formatter
// The logging level the logger should log at. This is typically (and defaults
// to) `logrus.Info`, which allows Info(), Warn(), Error() and Fatal() to be
// logged. `logrus.Debug` is useful in
Level Level
// Used to sync writing to the log.
mu sync.Mutex
}
// Creates a new logger. Configuration should be set by changing `Formatter`,
// `Out` and `Hooks` directly on the default logger instance. You can also just
// instantiate your own:
//
// var log = &Logger{
// Out: os.Stderr,
// Formatter: new(JSONFormatter),
// Hooks: make(levelHooks),
// Level: logrus.DebugLevel,
// }
//
// It's recommended to make this a global instance called `log`.
func New() *Logger {
return &Logger{
Out: os.Stdout,
Formatter: new(TextFormatter),
Hooks: make(levelHooks),
Level: InfoLevel,
}
}
// Adds a field to the log entry, note that you it doesn't log until you call
// Debug, Print, Info, Warn, Fatal or Panic. It only creates a log entry.
// Ff you want multiple fields, use `WithFields`.
func (logger *Logger) WithField(key string, value interface{}) *Entry {
return NewEntry(logger).WithField(key, value)
}
// Adds a struct of fields to the log entry. All it does is call `WithField` for
// each `Field`.
func (logger *Logger) WithFields(fields Fields) *Entry {
return NewEntry(logger).WithFields(fields)
}
func (logger *Logger) Debugf(format string, args ...interface{}) {
if logger.Level >= DebugLevel {
NewEntry(logger).Debugf(format, args...)
}
}
func (logger *Logger) Infof(format string, args ...interface{}) {
if logger.Level >= InfoLevel {
NewEntry(logger).Infof(format, args...)
}
}
func (logger *Logger) Printf(format string, args ...interface{}) {
NewEntry(logger).Printf(format, args...)
}
func (logger *Logger) Warnf(format string, args ...interface{}) {
if logger.Level >= WarnLevel {
NewEntry(logger).Warnf(format, args...)
}
}
func (logger *Logger) Warningf(format string, args ...interface{}) {
if logger.Level >= WarnLevel {
NewEntry(logger).Warnf(format, args...)
}
}
func (logger *Logger) Errorf(format string, args ...interface{}) {
if logger.Level >= ErrorLevel {
NewEntry(logger).Errorf(format, args...)
}
}
func (logger *Logger) Fatalf(format string, args ...interface{}) {
if logger.Level >= FatalLevel {
NewEntry(logger).Fatalf(format, args...)
}
}
func (logger *Logger) Panicf(format string, args ...interface{}) {
if logger.Level >= PanicLevel {
NewEntry(logger).Panicf(format, args...)
}
}
func (logger *Logger) Debug(args ...interface{}) {
if logger.Level >= DebugLevel {
NewEntry(logger).Debug(args...)
}
}
func (logger *Logger) Info(args ...interface{}) {
if logger.Level >= InfoLevel {
NewEntry(logger).Info(args...)
}
}
func (logger *Logger) Print(args ...interface{}) {
NewEntry(logger).Info(args...)
}
func (logger *Logger) Warn(args ...interface{}) {
if logger.Level >= WarnLevel {
NewEntry(logger).Warn(args...)
}
}
func (logger *Logger) Warning(args ...interface{}) {
if logger.Level >= WarnLevel {
NewEntry(logger).Warn(args...)
}
}
func (logger *Logger) Error(args ...interface{}) {
if logger.Level >= ErrorLevel {
NewEntry(logger).Error(args...)
}
}
func (logger *Logger) Fatal(args ...interface{}) {
if logger.Level >= FatalLevel {
NewEntry(logger).Fatal(args...)
}
}
func (logger *Logger) Panic(args ...interface{}) {
if logger.Level >= PanicLevel {
NewEntry(logger).Panic(args...)
}
}
func (logger *Logger) Debugln(args ...interface{}) {
if logger.Level >= DebugLevel {
NewEntry(logger).Debugln(args...)
}
}
func (logger *Logger) Infoln(args ...interface{}) {
if logger.Level >= InfoLevel {
NewEntry(logger).Infoln(args...)
}
}
func (logger *Logger) Println(args ...interface{}) {
NewEntry(logger).Println(args...)
}
func (logger *Logger) Warnln(args ...interface{}) {
if logger.Level >= WarnLevel {
NewEntry(logger).Warnln(args...)
}
}
func (logger *Logger) Warningln(args ...interface{}) {
if logger.Level >= WarnLevel {
NewEntry(logger).Warnln(args...)
}
}
func (logger *Logger) Errorln(args ...interface{}) {
if logger.Level >= ErrorLevel {
NewEntry(logger).Errorln(args...)
}
}
func (logger *Logger) Fatalln(args ...interface{}) {
if logger.Level >= FatalLevel {
NewEntry(logger).Fatalln(args...)
}
}
func (logger *Logger) Panicln(args ...interface{}) {
if logger.Level >= PanicLevel {
NewEntry(logger).Panicln(args...)
}
}

View file

@ -1,94 +0,0 @@
package logrus
import (
"fmt"
"log"
)
// Fields type, used to pass to `WithFields`.
type Fields map[string]interface{}
// Level type
type Level uint8
// Convert the Level to a string. E.g. PanicLevel becomes "panic".
func (level Level) String() string {
switch level {
case DebugLevel:
return "debug"
case InfoLevel:
return "info"
case WarnLevel:
return "warning"
case ErrorLevel:
return "error"
case FatalLevel:
return "fatal"
case PanicLevel:
return "panic"
}
return "unknown"
}
// ParseLevel takes a string level and returns the Logrus log level constant.
func ParseLevel(lvl string) (Level, error) {
switch lvl {
case "panic":
return PanicLevel, nil
case "fatal":
return FatalLevel, nil
case "error":
return ErrorLevel, nil
case "warn", "warning":
return WarnLevel, nil
case "info":
return InfoLevel, nil
case "debug":
return DebugLevel, nil
}
var l Level
return l, fmt.Errorf("not a valid logrus Level: %q", lvl)
}
// These are the different logging levels. You can set the logging level to log
// on your instance of logger, obtained with `logrus.New()`.
const (
// PanicLevel level, highest level of severity. Logs and then calls panic with the
// message passed to Debug, Info, ...
PanicLevel Level = iota
// FatalLevel level. Logs and then calls `os.Exit(1)`. It will exit even if the
// logging level is set to Panic.
FatalLevel
// ErrorLevel level. Logs. Used for errors that should definitely be noted.
// Commonly used for hooks to send errors to an error tracking service.
ErrorLevel
// WarnLevel level. Non-critical entries that deserve eyes.
WarnLevel
// InfoLevel level. General operational entries about what's going on inside the
// application.
InfoLevel
// DebugLevel level. Usually only enabled when debugging. Very verbose logging.
DebugLevel
)
// Won't compile if StdLogger can't be realized by a log.Logger
var _ StdLogger = &log.Logger{}
// StdLogger is what your logrus-enabled library should take, that way
// it'll accept a stdlib logger and a logrus logger. There's no standard
// interface, this is the closest we get, unfortunately.
type StdLogger interface {
Print(...interface{})
Printf(string, ...interface{})
Println(...interface{})
Fatal(...interface{})
Fatalf(string, ...interface{})
Fatalln(...interface{})
Panic(...interface{})
Panicf(string, ...interface{})
Panicln(...interface{})
}

View file

@ -1,12 +0,0 @@
// Based on ssh/terminal:
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package logrus
import "syscall"
const ioctlReadTermios = syscall.TIOCGETA
type Termios syscall.Termios

View file

@ -1,20 +0,0 @@
/*
Go 1.2 doesn't include Termios for FreeBSD. This should be added in 1.3 and this could be merged with terminal_darwin.
*/
package logrus
import (
"syscall"
)
const ioctlReadTermios = syscall.TIOCGETA
type Termios struct {
Iflag uint32
Oflag uint32
Cflag uint32
Lflag uint32
Cc [20]uint8
Ispeed uint32
Ospeed uint32
}

View file

@ -1,12 +0,0 @@
// Based on ssh/terminal:
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package logrus
import "syscall"
const ioctlReadTermios = syscall.TCGETS
type Termios syscall.Termios

View file

@ -1,21 +0,0 @@
// Based on ssh/terminal:
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux darwin freebsd openbsd
package logrus
import (
"syscall"
"unsafe"
)
// IsTerminal returns true if the given file descriptor is a terminal.
func IsTerminal() bool {
fd := syscall.Stdout
var termios Termios
_, _, err := syscall.Syscall6(syscall.SYS_IOCTL, uintptr(fd), ioctlReadTermios, uintptr(unsafe.Pointer(&termios)), 0, 0, 0)
return err == 0
}

View file

@ -1,7 +0,0 @@
package logrus
import "syscall"
const ioctlReadTermios = syscall.TIOCGETA
type Termios syscall.Termios

View file

@ -1,27 +0,0 @@
// Based on ssh/terminal:
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build windows
package logrus
import (
"syscall"
"unsafe"
)
var kernel32 = syscall.NewLazyDLL("kernel32.dll")
var (
procGetConsoleMode = kernel32.NewProc("GetConsoleMode")
)
// IsTerminal returns true if the given file descriptor is a terminal.
func IsTerminal() bool {
fd := syscall.Stdout
var st uint32
r, _, e := syscall.Syscall(procGetConsoleMode.Addr(), 2, uintptr(fd), uintptr(unsafe.Pointer(&st)), 0)
return r != 0 && e == 0
}

View file

@ -1,149 +0,0 @@
package logrus
import (
"bytes"
"fmt"
"sort"
"strings"
"time"
)
const (
nocolor = 0
red = 31
green = 32
yellow = 33
blue = 34
gray = 37
)
var (
baseTimestamp time.Time
isTerminal bool
)
func init() {
baseTimestamp = time.Now()
isTerminal = IsTerminal()
}
func miniTS() int {
return int(time.Since(baseTimestamp) / time.Second)
}
type TextFormatter struct {
// Set to true to bypass checking for a TTY before outputting colors.
ForceColors bool
// Force disabling colors.
DisableColors bool
// Disable timestamp logging. useful when output is redirected to logging
// system that already adds timestamps.
DisableTimestamp bool
// Enable logging the full timestamp when a TTY is attached instead of just
// the time passed since beginning of execution.
FullTimestamp bool
// TimestampFormat to use for display when a full timestamp is printed
TimestampFormat string
// The fields are sorted by default for a consistent output. For applications
// that log extremely frequently and don't use the JSON formatter this may not
// be desired.
DisableSorting bool
}
func (f *TextFormatter) Format(entry *Entry) ([]byte, error) {
var keys []string = make([]string, 0, len(entry.Data))
for k := range entry.Data {
keys = append(keys, k)
}
if !f.DisableSorting {
sort.Strings(keys)
}
b := &bytes.Buffer{}
prefixFieldClashes(entry.Data)
isColored := (f.ForceColors || isTerminal) && !f.DisableColors
if f.TimestampFormat == "" {
f.TimestampFormat = DefaultTimestampFormat
}
if isColored {
f.printColored(b, entry, keys)
} else {
if !f.DisableTimestamp {
f.appendKeyValue(b, "time", entry.Time.Format(f.TimestampFormat))
}
f.appendKeyValue(b, "level", entry.Level.String())
f.appendKeyValue(b, "msg", entry.Message)
for _, key := range keys {
f.appendKeyValue(b, key, entry.Data[key])
}
}
b.WriteByte('\n')
return b.Bytes(), nil
}
func (f *TextFormatter) printColored(b *bytes.Buffer, entry *Entry, keys []string) {
var levelColor int
switch entry.Level {
case DebugLevel:
levelColor = gray
case WarnLevel:
levelColor = yellow
case ErrorLevel, FatalLevel, PanicLevel:
levelColor = red
default:
levelColor = blue
}
levelText := strings.ToUpper(entry.Level.String())[0:4]
if !f.FullTimestamp {
fmt.Fprintf(b, "\x1b[%dm%s\x1b[0m[%04d] %-44s ", levelColor, levelText, miniTS(), entry.Message)
} else {
fmt.Fprintf(b, "\x1b[%dm%s\x1b[0m[%s] %-44s ", levelColor, levelText, entry.Time.Format(f.TimestampFormat), entry.Message)
}
for _, k := range keys {
v := entry.Data[k]
fmt.Fprintf(b, " \x1b[%dm%s\x1b[0m=%v", levelColor, k, v)
}
}
func needsQuoting(text string) bool {
for _, ch := range text {
if !((ch >= 'a' && ch <= 'z') ||
(ch >= 'A' && ch <= 'Z') ||
(ch >= '0' && ch <= '9') ||
ch == '-' || ch == '.') {
return false
}
}
return true
}
func (f *TextFormatter) appendKeyValue(b *bytes.Buffer, key, value interface{}) {
switch value.(type) {
case string:
if needsQuoting(value.(string)) {
fmt.Fprintf(b, "%v=%s ", key, value)
} else {
fmt.Fprintf(b, "%v=%q ", key, value)
}
case error:
if needsQuoting(value.(error).Error()) {
fmt.Fprintf(b, "%v=%s ", key, value)
} else {
fmt.Fprintf(b, "%v=%q ", key, value)
}
default:
fmt.Fprintf(b, "%v=%v ", key, value)
}
}

View file

@ -1,31 +0,0 @@
package logrus
import (
"bufio"
"io"
"runtime"
)
func (logger *Logger) Writer() *io.PipeWriter {
reader, writer := io.Pipe()
go logger.writerScanner(reader)
runtime.SetFinalizer(writer, writerFinalizer)
return writer
}
func (logger *Logger) writerScanner(reader *io.PipeReader) {
scanner := bufio.NewScanner(reader)
for scanner.Scan() {
logger.Print(scanner.Text())
}
if err := scanner.Err(); err != nil {
logger.Errorf("Error while reading from Writer: %s", err)
}
reader.Close()
}
func writerFinalizer(writer *io.PipeWriter) {
writer.Close()
}

View file

@ -1,27 +0,0 @@
Copyright (c) 2012 Rodrigo Moraes. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View file

@ -1,143 +0,0 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package context
import (
"net/http"
"sync"
"time"
)
var (
mutex sync.RWMutex
data = make(map[*http.Request]map[interface{}]interface{})
datat = make(map[*http.Request]int64)
)
// Set stores a value for a given key in a given request.
func Set(r *http.Request, key, val interface{}) {
mutex.Lock()
if data[r] == nil {
data[r] = make(map[interface{}]interface{})
datat[r] = time.Now().Unix()
}
data[r][key] = val
mutex.Unlock()
}
// Get returns a value stored for a given key in a given request.
func Get(r *http.Request, key interface{}) interface{} {
mutex.RLock()
if ctx := data[r]; ctx != nil {
value := ctx[key]
mutex.RUnlock()
return value
}
mutex.RUnlock()
return nil
}
// GetOk returns stored value and presence state like multi-value return of map access.
func GetOk(r *http.Request, key interface{}) (interface{}, bool) {
mutex.RLock()
if _, ok := data[r]; ok {
value, ok := data[r][key]
mutex.RUnlock()
return value, ok
}
mutex.RUnlock()
return nil, false
}
// GetAll returns all stored values for the request as a map. Nil is returned for invalid requests.
func GetAll(r *http.Request) map[interface{}]interface{} {
mutex.RLock()
if context, ok := data[r]; ok {
result := make(map[interface{}]interface{}, len(context))
for k, v := range context {
result[k] = v
}
mutex.RUnlock()
return result
}
mutex.RUnlock()
return nil
}
// GetAllOk returns all stored values for the request as a map and a boolean value that indicates if
// the request was registered.
func GetAllOk(r *http.Request) (map[interface{}]interface{}, bool) {
mutex.RLock()
context, ok := data[r]
result := make(map[interface{}]interface{}, len(context))
for k, v := range context {
result[k] = v
}
mutex.RUnlock()
return result, ok
}
// Delete removes a value stored for a given key in a given request.
func Delete(r *http.Request, key interface{}) {
mutex.Lock()
if data[r] != nil {
delete(data[r], key)
}
mutex.Unlock()
}
// Clear removes all values stored for a given request.
//
// This is usually called by a handler wrapper to clean up request
// variables at the end of a request lifetime. See ClearHandler().
func Clear(r *http.Request) {
mutex.Lock()
clear(r)
mutex.Unlock()
}
// clear is Clear without the lock.
func clear(r *http.Request) {
delete(data, r)
delete(datat, r)
}
// Purge removes request data stored for longer than maxAge, in seconds.
// It returns the amount of requests removed.
//
// If maxAge <= 0, all request data is removed.
//
// This is only used for sanity check: in case context cleaning was not
// properly set some request data can be kept forever, consuming an increasing
// amount of memory. In case this is detected, Purge() must be called
// periodically until the problem is fixed.
func Purge(maxAge int) int {
mutex.Lock()
count := 0
if maxAge <= 0 {
count = len(data)
data = make(map[*http.Request]map[interface{}]interface{})
datat = make(map[*http.Request]int64)
} else {
min := time.Now().Unix() - int64(maxAge)
for r := range data {
if datat[r] < min {
clear(r)
count++
}
}
}
mutex.Unlock()
return count
}
// ClearHandler wraps an http.Handler and clears request values at the end
// of a request lifetime.
func ClearHandler(h http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
defer Clear(r)
h.ServeHTTP(w, r)
})
}

View file

@ -1,82 +0,0 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package context stores values shared during a request lifetime.
For example, a router can set variables extracted from the URL and later
application handlers can access those values, or it can be used to store
sessions values to be saved at the end of a request. There are several
others common uses.
The idea was posted by Brad Fitzpatrick to the go-nuts mailing list:
http://groups.google.com/group/golang-nuts/msg/e2d679d303aa5d53
Here's the basic usage: first define the keys that you will need. The key
type is interface{} so a key can be of any type that supports equality.
Here we define a key using a custom int type to avoid name collisions:
package foo
import (
"github.com/gorilla/context"
)
type key int
const MyKey key = 0
Then set a variable. Variables are bound to an http.Request object, so you
need a request instance to set a value:
context.Set(r, MyKey, "bar")
The application can later access the variable using the same key you provided:
func MyHandler(w http.ResponseWriter, r *http.Request) {
// val is "bar".
val := context.Get(r, foo.MyKey)
// returns ("bar", true)
val, ok := context.GetOk(r, foo.MyKey)
// ...
}
And that's all about the basic usage. We discuss some other ideas below.
Any type can be stored in the context. To enforce a given type, make the key
private and wrap Get() and Set() to accept and return values of a specific
type:
type key int
const mykey key = 0
// GetMyKey returns a value for this package from the request values.
func GetMyKey(r *http.Request) SomeType {
if rv := context.Get(r, mykey); rv != nil {
return rv.(SomeType)
}
return nil
}
// SetMyKey sets a value for this package in the request values.
func SetMyKey(r *http.Request, val SomeType) {
context.Set(r, mykey, val)
}
Variables must be cleared at the end of a request, to remove all values
that were stored. This can be done in an http.Handler, after a request was
served. Just call Clear() passing the request:
context.Clear(r)
...or use ClearHandler(), which conveniently wraps an http.Handler to clear
variables at the end of a request lifetime.
The Routers from the packages gorilla/mux and gorilla/pat call Clear()
so if you are using either of them you don't need to clear the context manually.
*/
package context

View file

@ -1,27 +0,0 @@
Copyright (c) 2012 Rodrigo Moraes. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View file

@ -1,199 +0,0 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package gorilla/mux implements a request router and dispatcher.
The name mux stands for "HTTP request multiplexer". Like the standard
http.ServeMux, mux.Router matches incoming requests against a list of
registered routes and calls a handler for the route that matches the URL
or other conditions. The main features are:
* Requests can be matched based on URL host, path, path prefix, schemes,
header and query values, HTTP methods or using custom matchers.
* URL hosts and paths can have variables with an optional regular
expression.
* Registered URLs can be built, or "reversed", which helps maintaining
references to resources.
* Routes can be used as subrouters: nested routes are only tested if the
parent route matches. This is useful to define groups of routes that
share common conditions like a host, a path prefix or other repeated
attributes. As a bonus, this optimizes request matching.
* It implements the http.Handler interface so it is compatible with the
standard http.ServeMux.
Let's start registering a couple of URL paths and handlers:
func main() {
r := mux.NewRouter()
r.HandleFunc("/", HomeHandler)
r.HandleFunc("/products", ProductsHandler)
r.HandleFunc("/articles", ArticlesHandler)
http.Handle("/", r)
}
Here we register three routes mapping URL paths to handlers. This is
equivalent to how http.HandleFunc() works: if an incoming request URL matches
one of the paths, the corresponding handler is called passing
(http.ResponseWriter, *http.Request) as parameters.
Paths can have variables. They are defined using the format {name} or
{name:pattern}. If a regular expression pattern is not defined, the matched
variable will be anything until the next slash. For example:
r := mux.NewRouter()
r.HandleFunc("/products/{key}", ProductHandler)
r.HandleFunc("/articles/{category}/", ArticlesCategoryHandler)
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)
The names are used to create a map of route variables which can be retrieved
calling mux.Vars():
vars := mux.Vars(request)
category := vars["category"]
And this is all you need to know about the basic usage. More advanced options
are explained below.
Routes can also be restricted to a domain or subdomain. Just define a host
pattern to be matched. They can also have variables:
r := mux.NewRouter()
// Only matches if domain is "www.domain.com".
r.Host("www.domain.com")
// Matches a dynamic subdomain.
r.Host("{subdomain:[a-z]+}.domain.com")
There are several other matchers that can be added. To match path prefixes:
r.PathPrefix("/products/")
...or HTTP methods:
r.Methods("GET", "POST")
...or URL schemes:
r.Schemes("https")
...or header values:
r.Headers("X-Requested-With", "XMLHttpRequest")
...or query values:
r.Queries("key", "value")
...or to use a custom matcher function:
r.MatcherFunc(func(r *http.Request, rm *RouteMatch) bool {
return r.ProtoMajor == 0
})
...and finally, it is possible to combine several matchers in a single route:
r.HandleFunc("/products", ProductsHandler).
Host("www.domain.com").
Methods("GET").
Schemes("http")
Setting the same matching conditions again and again can be boring, so we have
a way to group several routes that share the same requirements.
We call it "subrouting".
For example, let's say we have several URLs that should only match when the
host is "www.domain.com". Create a route for that host and get a "subrouter"
from it:
r := mux.NewRouter()
s := r.Host("www.domain.com").Subrouter()
Then register routes in the subrouter:
s.HandleFunc("/products/", ProductsHandler)
s.HandleFunc("/products/{key}", ProductHandler)
s.HandleFunc("/articles/{category}/{id:[0-9]+}"), ArticleHandler)
The three URL paths we registered above will only be tested if the domain is
"www.domain.com", because the subrouter is tested first. This is not
only convenient, but also optimizes request matching. You can create
subrouters combining any attribute matchers accepted by a route.
Subrouters can be used to create domain or path "namespaces": you define
subrouters in a central place and then parts of the app can register its
paths relatively to a given subrouter.
There's one more thing about subroutes. When a subrouter has a path prefix,
the inner routes use it as base for their paths:
r := mux.NewRouter()
s := r.PathPrefix("/products").Subrouter()
// "/products/"
s.HandleFunc("/", ProductsHandler)
// "/products/{key}/"
s.HandleFunc("/{key}/", ProductHandler)
// "/products/{key}/details"
s.HandleFunc("/{key}/details", ProductDetailsHandler)
Now let's see how to build registered URLs.
Routes can be named. All routes that define a name can have their URLs built,
or "reversed". We define a name calling Name() on a route. For example:
r := mux.NewRouter()
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
Name("article")
To build a URL, get the route and call the URL() method, passing a sequence of
key/value pairs for the route variables. For the previous route, we would do:
url, err := r.Get("article").URL("category", "technology", "id", "42")
...and the result will be a url.URL with the following path:
"/articles/technology/42"
This also works for host variables:
r := mux.NewRouter()
r.Host("{subdomain}.domain.com").
Path("/articles/{category}/{id:[0-9]+}").
HandlerFunc(ArticleHandler).
Name("article")
// url.String() will be "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
"category", "technology",
"id", "42")
All variables defined in the route are required, and their values must
conform to the corresponding patterns. These requirements guarantee that a
generated URL will always match a registered route -- the only exception is
for explicitly defined "build-only" routes which never match.
There's also a way to build only the URL host or path for a route:
use the methods URLHost() or URLPath() instead. For the previous route,
we would do:
// "http://news.domain.com/"
host, err := r.Get("article").URLHost("subdomain", "news")
// "/articles/technology/42"
path, err := r.Get("article").URLPath("category", "technology", "id", "42")
And if you use subrouters, host and path defined separately can be built
as well:
r := mux.NewRouter()
s := r.Host("{subdomain}.domain.com").Subrouter()
s.Path("/articles/{category}/{id:[0-9]+}").
HandlerFunc(ArticleHandler).
Name("article")
// "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
"category", "technology",
"id", "42")
*/
package mux

View file

@ -1,353 +0,0 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mux
import (
"fmt"
"net/http"
"path"
"github.com/gorilla/context"
)
// NewRouter returns a new router instance.
func NewRouter() *Router {
return &Router{namedRoutes: make(map[string]*Route), KeepContext: false}
}
// Router registers routes to be matched and dispatches a handler.
//
// It implements the http.Handler interface, so it can be registered to serve
// requests:
//
// var router = mux.NewRouter()
//
// func main() {
// http.Handle("/", router)
// }
//
// Or, for Google App Engine, register it in a init() function:
//
// func init() {
// http.Handle("/", router)
// }
//
// This will send all incoming requests to the router.
type Router struct {
// Configurable Handler to be used when no route matches.
NotFoundHandler http.Handler
// Parent route, if this is a subrouter.
parent parentRoute
// Routes to be matched, in order.
routes []*Route
// Routes by name for URL building.
namedRoutes map[string]*Route
// See Router.StrictSlash(). This defines the flag for new routes.
strictSlash bool
// If true, do not clear the request context after handling the request
KeepContext bool
}
// Match matches registered routes against the request.
func (r *Router) Match(req *http.Request, match *RouteMatch) bool {
for _, route := range r.routes {
if route.Match(req, match) {
return true
}
}
return false
}
// ServeHTTP dispatches the handler registered in the matched route.
//
// When there is a match, the route variables can be retrieved calling
// mux.Vars(request).
func (r *Router) ServeHTTP(w http.ResponseWriter, req *http.Request) {
// Clean path to canonical form and redirect.
if p := cleanPath(req.URL.Path); p != req.URL.Path {
// Added 3 lines (Philip Schlump) - It was droping the query string and #whatever from query.
// This matches with fix in go 1.2 r.c. 4 for same problem. Go Issue:
// http://code.google.com/p/go/issues/detail?id=5252
url := *req.URL
url.Path = p
p = url.String()
w.Header().Set("Location", p)
w.WriteHeader(http.StatusMovedPermanently)
return
}
var match RouteMatch
var handler http.Handler
if r.Match(req, &match) {
handler = match.Handler
setVars(req, match.Vars)
setCurrentRoute(req, match.Route)
}
if handler == nil {
handler = r.NotFoundHandler
if handler == nil {
handler = http.NotFoundHandler()
}
}
if !r.KeepContext {
defer context.Clear(req)
}
handler.ServeHTTP(w, req)
}
// Get returns a route registered with the given name.
func (r *Router) Get(name string) *Route {
return r.getNamedRoutes()[name]
}
// GetRoute returns a route registered with the given name. This method
// was renamed to Get() and remains here for backwards compatibility.
func (r *Router) GetRoute(name string) *Route {
return r.getNamedRoutes()[name]
}
// StrictSlash defines the trailing slash behavior for new routes. The initial
// value is false.
//
// When true, if the route path is "/path/", accessing "/path" will redirect
// to the former and vice versa. In other words, your application will always
// see the path as specified in the route.
//
// When false, if the route path is "/path", accessing "/path/" will not match
// this route and vice versa.
//
// Special case: when a route sets a path prefix using the PathPrefix() method,
// strict slash is ignored for that route because the redirect behavior can't
// be determined from a prefix alone. However, any subrouters created from that
// route inherit the original StrictSlash setting.
func (r *Router) StrictSlash(value bool) *Router {
r.strictSlash = value
return r
}
// ----------------------------------------------------------------------------
// parentRoute
// ----------------------------------------------------------------------------
// getNamedRoutes returns the map where named routes are registered.
func (r *Router) getNamedRoutes() map[string]*Route {
if r.namedRoutes == nil {
if r.parent != nil {
r.namedRoutes = r.parent.getNamedRoutes()
} else {
r.namedRoutes = make(map[string]*Route)
}
}
return r.namedRoutes
}
// getRegexpGroup returns regexp definitions from the parent route, if any.
func (r *Router) getRegexpGroup() *routeRegexpGroup {
if r.parent != nil {
return r.parent.getRegexpGroup()
}
return nil
}
// ----------------------------------------------------------------------------
// Route factories
// ----------------------------------------------------------------------------
// NewRoute registers an empty route.
func (r *Router) NewRoute() *Route {
route := &Route{parent: r, strictSlash: r.strictSlash}
r.routes = append(r.routes, route)
return route
}
// Handle registers a new route with a matcher for the URL path.
// See Route.Path() and Route.Handler().
func (r *Router) Handle(path string, handler http.Handler) *Route {
return r.NewRoute().Path(path).Handler(handler)
}
// HandleFunc registers a new route with a matcher for the URL path.
// See Route.Path() and Route.HandlerFunc().
func (r *Router) HandleFunc(path string, f func(http.ResponseWriter,
*http.Request)) *Route {
return r.NewRoute().Path(path).HandlerFunc(f)
}
// Headers registers a new route with a matcher for request header values.
// See Route.Headers().
func (r *Router) Headers(pairs ...string) *Route {
return r.NewRoute().Headers(pairs...)
}
// Host registers a new route with a matcher for the URL host.
// See Route.Host().
func (r *Router) Host(tpl string) *Route {
return r.NewRoute().Host(tpl)
}
// MatcherFunc registers a new route with a custom matcher function.
// See Route.MatcherFunc().
func (r *Router) MatcherFunc(f MatcherFunc) *Route {
return r.NewRoute().MatcherFunc(f)
}
// Methods registers a new route with a matcher for HTTP methods.
// See Route.Methods().
func (r *Router) Methods(methods ...string) *Route {
return r.NewRoute().Methods(methods...)
}
// Path registers a new route with a matcher for the URL path.
// See Route.Path().
func (r *Router) Path(tpl string) *Route {
return r.NewRoute().Path(tpl)
}
// PathPrefix registers a new route with a matcher for the URL path prefix.
// See Route.PathPrefix().
func (r *Router) PathPrefix(tpl string) *Route {
return r.NewRoute().PathPrefix(tpl)
}
// Queries registers a new route with a matcher for URL query values.
// See Route.Queries().
func (r *Router) Queries(pairs ...string) *Route {
return r.NewRoute().Queries(pairs...)
}
// Schemes registers a new route with a matcher for URL schemes.
// See Route.Schemes().
func (r *Router) Schemes(schemes ...string) *Route {
return r.NewRoute().Schemes(schemes...)
}
// ----------------------------------------------------------------------------
// Context
// ----------------------------------------------------------------------------
// RouteMatch stores information about a matched route.
type RouteMatch struct {
Route *Route
Handler http.Handler
Vars map[string]string
}
type contextKey int
const (
varsKey contextKey = iota
routeKey
)
// Vars returns the route variables for the current request, if any.
func Vars(r *http.Request) map[string]string {
if rv := context.Get(r, varsKey); rv != nil {
return rv.(map[string]string)
}
return nil
}
// CurrentRoute returns the matched route for the current request, if any.
func CurrentRoute(r *http.Request) *Route {
if rv := context.Get(r, routeKey); rv != nil {
return rv.(*Route)
}
return nil
}
func setVars(r *http.Request, val interface{}) {
context.Set(r, varsKey, val)
}
func setCurrentRoute(r *http.Request, val interface{}) {
context.Set(r, routeKey, val)
}
// ----------------------------------------------------------------------------
// Helpers
// ----------------------------------------------------------------------------
// cleanPath returns the canonical path for p, eliminating . and .. elements.
// Borrowed from the net/http package.
func cleanPath(p string) string {
if p == "" {
return "/"
}
if p[0] != '/' {
p = "/" + p
}
np := path.Clean(p)
// path.Clean removes trailing slash except for root;
// put the trailing slash back if necessary.
if p[len(p)-1] == '/' && np != "/" {
np += "/"
}
return np
}
// uniqueVars returns an error if two slices contain duplicated strings.
func uniqueVars(s1, s2 []string) error {
for _, v1 := range s1 {
for _, v2 := range s2 {
if v1 == v2 {
return fmt.Errorf("mux: duplicated route variable %q", v2)
}
}
}
return nil
}
// mapFromPairs converts variadic string parameters to a string map.
func mapFromPairs(pairs ...string) (map[string]string, error) {
length := len(pairs)
if length%2 != 0 {
return nil, fmt.Errorf(
"mux: number of parameters must be multiple of 2, got %v", pairs)
}
m := make(map[string]string, length/2)
for i := 0; i < length; i += 2 {
m[pairs[i]] = pairs[i+1]
}
return m, nil
}
// matchInArray returns true if the given string value is in the array.
func matchInArray(arr []string, value string) bool {
for _, v := range arr {
if v == value {
return true
}
}
return false
}
// matchMap returns true if the given key/value pairs exist in a given map.
func matchMap(toCheck map[string]string, toMatch map[string][]string,
canonicalKey bool) bool {
for k, v := range toCheck {
// Check if key exists.
if canonicalKey {
k = http.CanonicalHeaderKey(k)
}
if values := toMatch[k]; values == nil {
return false
} else if v != "" {
// If value was defined as an empty string we only check that the
// key exists. Otherwise we also check for equality.
valueExists := false
for _, value := range values {
if v == value {
valueExists = true
break
}
}
if !valueExists {
return false
}
}
}
return true
}

View file

@ -1,276 +0,0 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mux
import (
"bytes"
"fmt"
"net/http"
"net/url"
"regexp"
"strings"
)
// newRouteRegexp parses a route template and returns a routeRegexp,
// used to match a host, a path or a query string.
//
// It will extract named variables, assemble a regexp to be matched, create
// a "reverse" template to build URLs and compile regexps to validate variable
// values used in URL building.
//
// Previously we accepted only Python-like identifiers for variable
// names ([a-zA-Z_][a-zA-Z0-9_]*), but currently the only restriction is that
// name and pattern can't be empty, and names can't contain a colon.
func newRouteRegexp(tpl string, matchHost, matchPrefix, matchQuery, strictSlash bool) (*routeRegexp, error) {
// Check if it is well-formed.
idxs, errBraces := braceIndices(tpl)
if errBraces != nil {
return nil, errBraces
}
// Backup the original.
template := tpl
// Now let's parse it.
defaultPattern := "[^/]+"
if matchQuery {
defaultPattern = "[^?&]+"
matchPrefix = true
} else if matchHost {
defaultPattern = "[^.]+"
matchPrefix = false
}
// Only match strict slash if not matching
if matchPrefix || matchHost || matchQuery {
strictSlash = false
}
// Set a flag for strictSlash.
endSlash := false
if strictSlash && strings.HasSuffix(tpl, "/") {
tpl = tpl[:len(tpl)-1]
endSlash = true
}
varsN := make([]string, len(idxs)/2)
varsR := make([]*regexp.Regexp, len(idxs)/2)
pattern := bytes.NewBufferString("")
if !matchQuery {
pattern.WriteByte('^')
}
reverse := bytes.NewBufferString("")
var end int
var err error
for i := 0; i < len(idxs); i += 2 {
// Set all values we are interested in.
raw := tpl[end:idxs[i]]
end = idxs[i+1]
parts := strings.SplitN(tpl[idxs[i]+1:end-1], ":", 2)
name := parts[0]
patt := defaultPattern
if len(parts) == 2 {
patt = parts[1]
}
// Name or pattern can't be empty.
if name == "" || patt == "" {
return nil, fmt.Errorf("mux: missing name or pattern in %q",
tpl[idxs[i]:end])
}
// Build the regexp pattern.
fmt.Fprintf(pattern, "%s(%s)", regexp.QuoteMeta(raw), patt)
// Build the reverse template.
fmt.Fprintf(reverse, "%s%%s", raw)
// Append variable name and compiled pattern.
varsN[i/2] = name
varsR[i/2], err = regexp.Compile(fmt.Sprintf("^%s$", patt))
if err != nil {
return nil, err
}
}
// Add the remaining.
raw := tpl[end:]
pattern.WriteString(regexp.QuoteMeta(raw))
if strictSlash {
pattern.WriteString("[/]?")
}
if !matchPrefix {
pattern.WriteByte('$')
}
reverse.WriteString(raw)
if endSlash {
reverse.WriteByte('/')
}
// Compile full regexp.
reg, errCompile := regexp.Compile(pattern.String())
if errCompile != nil {
return nil, errCompile
}
// Done!
return &routeRegexp{
template: template,
matchHost: matchHost,
matchQuery: matchQuery,
strictSlash: strictSlash,
regexp: reg,
reverse: reverse.String(),
varsN: varsN,
varsR: varsR,
}, nil
}
// routeRegexp stores a regexp to match a host or path and information to
// collect and validate route variables.
type routeRegexp struct {
// The unmodified template.
template string
// True for host match, false for path or query string match.
matchHost bool
// True for query string match, false for path and host match.
matchQuery bool
// The strictSlash value defined on the route, but disabled if PathPrefix was used.
strictSlash bool
// Expanded regexp.
regexp *regexp.Regexp
// Reverse template.
reverse string
// Variable names.
varsN []string
// Variable regexps (validators).
varsR []*regexp.Regexp
}
// Match matches the regexp against the URL host or path.
func (r *routeRegexp) Match(req *http.Request, match *RouteMatch) bool {
if !r.matchHost {
if r.matchQuery {
return r.regexp.MatchString(req.URL.RawQuery)
} else {
return r.regexp.MatchString(req.URL.Path)
}
}
return r.regexp.MatchString(getHost(req))
}
// url builds a URL part using the given values.
func (r *routeRegexp) url(pairs ...string) (string, error) {
values, err := mapFromPairs(pairs...)
if err != nil {
return "", err
}
urlValues := make([]interface{}, len(r.varsN))
for k, v := range r.varsN {
value, ok := values[v]
if !ok {
return "", fmt.Errorf("mux: missing route variable %q", v)
}
urlValues[k] = value
}
rv := fmt.Sprintf(r.reverse, urlValues...)
if !r.regexp.MatchString(rv) {
// The URL is checked against the full regexp, instead of checking
// individual variables. This is faster but to provide a good error
// message, we check individual regexps if the URL doesn't match.
for k, v := range r.varsN {
if !r.varsR[k].MatchString(values[v]) {
return "", fmt.Errorf(
"mux: variable %q doesn't match, expected %q", values[v],
r.varsR[k].String())
}
}
}
return rv, nil
}
// braceIndices returns the first level curly brace indices from a string.
// It returns an error in case of unbalanced braces.
func braceIndices(s string) ([]int, error) {
var level, idx int
idxs := make([]int, 0)
for i := 0; i < len(s); i++ {
switch s[i] {
case '{':
if level++; level == 1 {
idx = i
}
case '}':
if level--; level == 0 {
idxs = append(idxs, idx, i+1)
} else if level < 0 {
return nil, fmt.Errorf("mux: unbalanced braces in %q", s)
}
}
}
if level != 0 {
return nil, fmt.Errorf("mux: unbalanced braces in %q", s)
}
return idxs, nil
}
// ----------------------------------------------------------------------------
// routeRegexpGroup
// ----------------------------------------------------------------------------
// routeRegexpGroup groups the route matchers that carry variables.
type routeRegexpGroup struct {
host *routeRegexp
path *routeRegexp
queries []*routeRegexp
}
// setMatch extracts the variables from the URL once a route matches.
func (v *routeRegexpGroup) setMatch(req *http.Request, m *RouteMatch, r *Route) {
// Store host variables.
if v.host != nil {
hostVars := v.host.regexp.FindStringSubmatch(getHost(req))
if hostVars != nil {
for k, v := range v.host.varsN {
m.Vars[v] = hostVars[k+1]
}
}
}
// Store path variables.
if v.path != nil {
pathVars := v.path.regexp.FindStringSubmatch(req.URL.Path)
if pathVars != nil {
for k, v := range v.path.varsN {
m.Vars[v] = pathVars[k+1]
}
// Check if we should redirect.
if v.path.strictSlash {
p1 := strings.HasSuffix(req.URL.Path, "/")
p2 := strings.HasSuffix(v.path.template, "/")
if p1 != p2 {
u, _ := url.Parse(req.URL.String())
if p1 {
u.Path = u.Path[:len(u.Path)-1]
} else {
u.Path += "/"
}
m.Handler = http.RedirectHandler(u.String(), 301)
}
}
}
}
// Store query string variables.
rawQuery := req.URL.RawQuery
for _, q := range v.queries {
queryVars := q.regexp.FindStringSubmatch(rawQuery)
if queryVars != nil {
for k, v := range q.varsN {
m.Vars[v] = queryVars[k+1]
}
}
}
}
// getHost tries its best to return the request host.
func getHost(r *http.Request) string {
if r.URL.IsAbs() {
return r.URL.Host
}
host := r.Host
// Slice off any port information.
if i := strings.Index(host, ":"); i != -1 {
host = host[:i]
}
return host
}

View file

@ -1,524 +0,0 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mux
import (
"errors"
"fmt"
"net/http"
"net/url"
"strings"
)
// Route stores information to match a request and build URLs.
type Route struct {
// Parent where the route was registered (a Router).
parent parentRoute
// Request handler for the route.
handler http.Handler
// List of matchers.
matchers []matcher
// Manager for the variables from host and path.
regexp *routeRegexpGroup
// If true, when the path pattern is "/path/", accessing "/path" will
// redirect to the former and vice versa.
strictSlash bool
// If true, this route never matches: it is only used to build URLs.
buildOnly bool
// The name used to build URLs.
name string
// Error resulted from building a route.
err error
}
// Match matches the route against the request.
func (r *Route) Match(req *http.Request, match *RouteMatch) bool {
if r.buildOnly || r.err != nil {
return false
}
// Match everything.
for _, m := range r.matchers {
if matched := m.Match(req, match); !matched {
return false
}
}
// Yay, we have a match. Let's collect some info about it.
if match.Route == nil {
match.Route = r
}
if match.Handler == nil {
match.Handler = r.handler
}
if match.Vars == nil {
match.Vars = make(map[string]string)
}
// Set variables.
if r.regexp != nil {
r.regexp.setMatch(req, match, r)
}
return true
}
// ----------------------------------------------------------------------------
// Route attributes
// ----------------------------------------------------------------------------
// GetError returns an error resulted from building the route, if any.
func (r *Route) GetError() error {
return r.err
}
// BuildOnly sets the route to never match: it is only used to build URLs.
func (r *Route) BuildOnly() *Route {
r.buildOnly = true
return r
}
// Handler --------------------------------------------------------------------
// Handler sets a handler for the route.
func (r *Route) Handler(handler http.Handler) *Route {
if r.err == nil {
r.handler = handler
}
return r
}
// HandlerFunc sets a handler function for the route.
func (r *Route) HandlerFunc(f func(http.ResponseWriter, *http.Request)) *Route {
return r.Handler(http.HandlerFunc(f))
}
// GetHandler returns the handler for the route, if any.
func (r *Route) GetHandler() http.Handler {
return r.handler
}
// Name -----------------------------------------------------------------------
// Name sets the name for the route, used to build URLs.
// If the name was registered already it will be overwritten.
func (r *Route) Name(name string) *Route {
if r.name != "" {
r.err = fmt.Errorf("mux: route already has name %q, can't set %q",
r.name, name)
}
if r.err == nil {
r.name = name
r.getNamedRoutes()[name] = r
}
return r
}
// GetName returns the name for the route, if any.
func (r *Route) GetName() string {
return r.name
}
// ----------------------------------------------------------------------------
// Matchers
// ----------------------------------------------------------------------------
// matcher types try to match a request.
type matcher interface {
Match(*http.Request, *RouteMatch) bool
}
// addMatcher adds a matcher to the route.
func (r *Route) addMatcher(m matcher) *Route {
if r.err == nil {
r.matchers = append(r.matchers, m)
}
return r
}
// addRegexpMatcher adds a host or path matcher and builder to a route.
func (r *Route) addRegexpMatcher(tpl string, matchHost, matchPrefix, matchQuery bool) error {
if r.err != nil {
return r.err
}
r.regexp = r.getRegexpGroup()
if !matchHost && !matchQuery {
if len(tpl) == 0 || tpl[0] != '/' {
return fmt.Errorf("mux: path must start with a slash, got %q", tpl)
}
if r.regexp.path != nil {
tpl = strings.TrimRight(r.regexp.path.template, "/") + tpl
}
}
rr, err := newRouteRegexp(tpl, matchHost, matchPrefix, matchQuery, r.strictSlash)
if err != nil {
return err
}
for _, q := range r.regexp.queries {
if err = uniqueVars(rr.varsN, q.varsN); err != nil {
return err
}
}
if matchHost {
if r.regexp.path != nil {
if err = uniqueVars(rr.varsN, r.regexp.path.varsN); err != nil {
return err
}
}
r.regexp.host = rr
} else {
if r.regexp.host != nil {
if err = uniqueVars(rr.varsN, r.regexp.host.varsN); err != nil {
return err
}
}
if matchQuery {
r.regexp.queries = append(r.regexp.queries, rr)
} else {
r.regexp.path = rr
}
}
r.addMatcher(rr)
return nil
}
// Headers --------------------------------------------------------------------
// headerMatcher matches the request against header values.
type headerMatcher map[string]string
func (m headerMatcher) Match(r *http.Request, match *RouteMatch) bool {
return matchMap(m, r.Header, true)
}
// Headers adds a matcher for request header values.
// It accepts a sequence of key/value pairs to be matched. For example:
//
// r := mux.NewRouter()
// r.Headers("Content-Type", "application/json",
// "X-Requested-With", "XMLHttpRequest")
//
// The above route will only match if both request header values match.
//
// It the value is an empty string, it will match any value if the key is set.
func (r *Route) Headers(pairs ...string) *Route {
if r.err == nil {
var headers map[string]string
headers, r.err = mapFromPairs(pairs...)
return r.addMatcher(headerMatcher(headers))
}
return r
}
// Host -----------------------------------------------------------------------
// Host adds a matcher for the URL host.
// It accepts a template with zero or more URL variables enclosed by {}.
// Variables can define an optional regexp pattern to me matched:
//
// - {name} matches anything until the next dot.
//
// - {name:pattern} matches the given regexp pattern.
//
// For example:
//
// r := mux.NewRouter()
// r.Host("www.domain.com")
// r.Host("{subdomain}.domain.com")
// r.Host("{subdomain:[a-z]+}.domain.com")
//
// Variable names must be unique in a given route. They can be retrieved
// calling mux.Vars(request).
func (r *Route) Host(tpl string) *Route {
r.err = r.addRegexpMatcher(tpl, true, false, false)
return r
}
// MatcherFunc ----------------------------------------------------------------
// MatcherFunc is the function signature used by custom matchers.
type MatcherFunc func(*http.Request, *RouteMatch) bool
func (m MatcherFunc) Match(r *http.Request, match *RouteMatch) bool {
return m(r, match)
}
// MatcherFunc adds a custom function to be used as request matcher.
func (r *Route) MatcherFunc(f MatcherFunc) *Route {
return r.addMatcher(f)
}
// Methods --------------------------------------------------------------------
// methodMatcher matches the request against HTTP methods.
type methodMatcher []string
func (m methodMatcher) Match(r *http.Request, match *RouteMatch) bool {
return matchInArray(m, r.Method)
}
// Methods adds a matcher for HTTP methods.
// It accepts a sequence of one or more methods to be matched, e.g.:
// "GET", "POST", "PUT".
func (r *Route) Methods(methods ...string) *Route {
for k, v := range methods {
methods[k] = strings.ToUpper(v)
}
return r.addMatcher(methodMatcher(methods))
}
// Path -----------------------------------------------------------------------
// Path adds a matcher for the URL path.
// It accepts a template with zero or more URL variables enclosed by {}. The
// template must start with a "/".
// Variables can define an optional regexp pattern to me matched:
//
// - {name} matches anything until the next slash.
//
// - {name:pattern} matches the given regexp pattern.
//
// For example:
//
// r := mux.NewRouter()
// r.Path("/products/").Handler(ProductsHandler)
// r.Path("/products/{key}").Handler(ProductsHandler)
// r.Path("/articles/{category}/{id:[0-9]+}").
// Handler(ArticleHandler)
//
// Variable names must be unique in a given route. They can be retrieved
// calling mux.Vars(request).
func (r *Route) Path(tpl string) *Route {
r.err = r.addRegexpMatcher(tpl, false, false, false)
return r
}
// PathPrefix -----------------------------------------------------------------
// PathPrefix adds a matcher for the URL path prefix. This matches if the given
// template is a prefix of the full URL path. See Route.Path() for details on
// the tpl argument.
//
// Note that it does not treat slashes specially ("/foobar/" will be matched by
// the prefix "/foo") so you may want to use a trailing slash here.
//
// Also note that the setting of Router.StrictSlash() has no effect on routes
// with a PathPrefix matcher.
func (r *Route) PathPrefix(tpl string) *Route {
r.err = r.addRegexpMatcher(tpl, false, true, false)
return r
}
// Query ----------------------------------------------------------------------
// Queries adds a matcher for URL query values.
// It accepts a sequence of key/value pairs. Values may define variables.
// For example:
//
// r := mux.NewRouter()
// r.Queries("foo", "bar", "id", "{id:[0-9]+}")
//
// The above route will only match if the URL contains the defined queries
// values, e.g.: ?foo=bar&id=42.
//
// It the value is an empty string, it will match any value if the key is set.
//
// Variables can define an optional regexp pattern to me matched:
//
// - {name} matches anything until the next slash.
//
// - {name:pattern} matches the given regexp pattern.
func (r *Route) Queries(pairs ...string) *Route {
length := len(pairs)
if length%2 != 0 {
r.err = fmt.Errorf(
"mux: number of parameters must be multiple of 2, got %v", pairs)
return nil
}
for i := 0; i < length; i += 2 {
if r.err = r.addRegexpMatcher(pairs[i]+"="+pairs[i+1], false, true, true); r.err != nil {
return r
}
}
return r
}
// Schemes --------------------------------------------------------------------
// schemeMatcher matches the request against URL schemes.
type schemeMatcher []string
func (m schemeMatcher) Match(r *http.Request, match *RouteMatch) bool {
return matchInArray(m, r.URL.Scheme)
}
// Schemes adds a matcher for URL schemes.
// It accepts a sequence of schemes to be matched, e.g.: "http", "https".
func (r *Route) Schemes(schemes ...string) *Route {
for k, v := range schemes {
schemes[k] = strings.ToLower(v)
}
return r.addMatcher(schemeMatcher(schemes))
}
// Subrouter ------------------------------------------------------------------
// Subrouter creates a subrouter for the route.
//
// It will test the inner routes only if the parent route matched. For example:
//
// r := mux.NewRouter()
// s := r.Host("www.domain.com").Subrouter()
// s.HandleFunc("/products/", ProductsHandler)
// s.HandleFunc("/products/{key}", ProductHandler)
// s.HandleFunc("/articles/{category}/{id:[0-9]+}"), ArticleHandler)
//
// Here, the routes registered in the subrouter won't be tested if the host
// doesn't match.
func (r *Route) Subrouter() *Router {
router := &Router{parent: r, strictSlash: r.strictSlash}
r.addMatcher(router)
return router
}
// ----------------------------------------------------------------------------
// URL building
// ----------------------------------------------------------------------------
// URL builds a URL for the route.
//
// It accepts a sequence of key/value pairs for the route variables. For
// example, given this route:
//
// r := mux.NewRouter()
// r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
// Name("article")
//
// ...a URL for it can be built using:
//
// url, err := r.Get("article").URL("category", "technology", "id", "42")
//
// ...which will return an url.URL with the following path:
//
// "/articles/technology/42"
//
// This also works for host variables:
//
// r := mux.NewRouter()
// r.Host("{subdomain}.domain.com").
// HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
// Name("article")
//
// // url.String() will be "http://news.domain.com/articles/technology/42"
// url, err := r.Get("article").URL("subdomain", "news",
// "category", "technology",
// "id", "42")
//
// All variables defined in the route are required, and their values must
// conform to the corresponding patterns.
func (r *Route) URL(pairs ...string) (*url.URL, error) {
if r.err != nil {
return nil, r.err
}
if r.regexp == nil {
return nil, errors.New("mux: route doesn't have a host or path")
}
var scheme, host, path string
var err error
if r.regexp.host != nil {
// Set a default scheme.
scheme = "http"
if host, err = r.regexp.host.url(pairs...); err != nil {
return nil, err
}
}
if r.regexp.path != nil {
if path, err = r.regexp.path.url(pairs...); err != nil {
return nil, err
}
}
return &url.URL{
Scheme: scheme,
Host: host,
Path: path,
}, nil
}
// URLHost builds the host part of the URL for a route. See Route.URL().
//
// The route must have a host defined.
func (r *Route) URLHost(pairs ...string) (*url.URL, error) {
if r.err != nil {
return nil, r.err
}
if r.regexp == nil || r.regexp.host == nil {
return nil, errors.New("mux: route doesn't have a host")
}
host, err := r.regexp.host.url(pairs...)
if err != nil {
return nil, err
}
return &url.URL{
Scheme: "http",
Host: host,
}, nil
}
// URLPath builds the path part of the URL for a route. See Route.URL().
//
// The route must have a path defined.
func (r *Route) URLPath(pairs ...string) (*url.URL, error) {
if r.err != nil {
return nil, r.err
}
if r.regexp == nil || r.regexp.path == nil {
return nil, errors.New("mux: route doesn't have a path")
}
path, err := r.regexp.path.url(pairs...)
if err != nil {
return nil, err
}
return &url.URL{
Path: path,
}, nil
}
// ----------------------------------------------------------------------------
// parentRoute
// ----------------------------------------------------------------------------
// parentRoute allows routes to know about parent host and path definitions.
type parentRoute interface {
getNamedRoutes() map[string]*Route
getRegexpGroup() *routeRegexpGroup
}
// getNamedRoutes returns the map where named routes are registered.
func (r *Route) getNamedRoutes() map[string]*Route {
if r.parent == nil {
// During tests router is not always set.
r.parent = NewRouter()
}
return r.parent.getNamedRoutes()
}
// getRegexpGroup returns regexp definitions from this route.
func (r *Route) getRegexpGroup() *routeRegexpGroup {
if r.regexp == nil {
if r.parent == nil {
// During tests router is not always set.
r.parent = NewRouter()
}
regexp := r.parent.getRegexpGroup()
if regexp == nil {
r.regexp = new(routeRegexpGroup)
} else {
// Copy.
r.regexp = &routeRegexpGroup{
host: regexp.host,
path: regexp.path,
queries: regexp.queries,
}
}
}
return r.regexp
}

View file

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2013 Mitchell Hashimoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View file

@ -1,151 +0,0 @@
package mapstructure
import (
"errors"
"reflect"
"strconv"
"strings"
"time"
)
// typedDecodeHook takes a raw DecodeHookFunc (an interface{}) and turns
// it into the proper DecodeHookFunc type, such as DecodeHookFuncType.
func typedDecodeHook(h DecodeHookFunc) DecodeHookFunc {
// Create variables here so we can reference them with the reflect pkg
var f1 DecodeHookFuncType
var f2 DecodeHookFuncKind
// Fill in the variables into this interface and the rest is done
// automatically using the reflect package.
potential := []interface{}{f1, f2}
v := reflect.ValueOf(h)
vt := v.Type()
for _, raw := range potential {
pt := reflect.ValueOf(raw).Type()
if vt.ConvertibleTo(pt) {
return v.Convert(pt).Interface()
}
}
return nil
}
// DecodeHookExec executes the given decode hook. This should be used
// since it'll naturally degrade to the older backwards compatible DecodeHookFunc
// that took reflect.Kind instead of reflect.Type.
func DecodeHookExec(
raw DecodeHookFunc,
from reflect.Type, to reflect.Type,
data interface{}) (interface{}, error) {
// Build our arguments that reflect expects
argVals := make([]reflect.Value, 3)
argVals[0] = reflect.ValueOf(from)
argVals[1] = reflect.ValueOf(to)
argVals[2] = reflect.ValueOf(data)
switch f := typedDecodeHook(raw).(type) {
case DecodeHookFuncType:
return f(from, to, data)
case DecodeHookFuncKind:
return f(from.Kind(), to.Kind(), data)
default:
return nil, errors.New("invalid decode hook signature")
}
}
// ComposeDecodeHookFunc creates a single DecodeHookFunc that
// automatically composes multiple DecodeHookFuncs.
//
// The composed funcs are called in order, with the result of the
// previous transformation.
func ComposeDecodeHookFunc(fs ...DecodeHookFunc) DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
var err error
for _, f1 := range fs {
data, err = DecodeHookExec(f1, f, t, data)
if err != nil {
return nil, err
}
// Modify the from kind to be correct with the new data
f = reflect.ValueOf(data).Type()
}
return data, nil
}
}
// StringToSliceHookFunc returns a DecodeHookFunc that converts
// string to []string by splitting on the given sep.
func StringToSliceHookFunc(sep string) DecodeHookFunc {
return func(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
if f != reflect.String || t != reflect.Slice {
return data, nil
}
raw := data.(string)
if raw == "" {
return []string{}, nil
}
return strings.Split(raw, sep), nil
}
}
// StringToTimeDurationHookFunc returns a DecodeHookFunc that converts
// strings to time.Duration.
func StringToTimeDurationHookFunc() DecodeHookFunc {
return func(
f reflect.Type,
t reflect.Type,
data interface{}) (interface{}, error) {
if f.Kind() != reflect.String {
return data, nil
}
if t != reflect.TypeOf(time.Duration(5)) {
return data, nil
}
// Convert it by parsing
return time.ParseDuration(data.(string))
}
}
func WeaklyTypedHook(
f reflect.Kind,
t reflect.Kind,
data interface{}) (interface{}, error) {
dataVal := reflect.ValueOf(data)
switch t {
case reflect.String:
switch f {
case reflect.Bool:
if dataVal.Bool() {
return "1", nil
} else {
return "0", nil
}
case reflect.Float32:
return strconv.FormatFloat(dataVal.Float(), 'f', -1, 64), nil
case reflect.Int:
return strconv.FormatInt(dataVal.Int(), 10), nil
case reflect.Slice:
dataType := dataVal.Type()
elemKind := dataType.Elem().Kind()
if elemKind == reflect.Uint8 {
return string(dataVal.Interface().([]uint8)), nil
}
case reflect.Uint:
return strconv.FormatUint(dataVal.Uint(), 10), nil
}
}
return data, nil
}

View file

@ -1,50 +0,0 @@
package mapstructure
import (
"errors"
"fmt"
"sort"
"strings"
)
// Error implements the error interface and can represents multiple
// errors that occur in the course of a single decode.
type Error struct {
Errors []string
}
func (e *Error) Error() string {
points := make([]string, len(e.Errors))
for i, err := range e.Errors {
points[i] = fmt.Sprintf("* %s", err)
}
sort.Strings(points)
return fmt.Sprintf(
"%d error(s) decoding:\n\n%s",
len(e.Errors), strings.Join(points, "\n"))
}
// WrappedErrors implements the errwrap.Wrapper interface to make this
// return value more useful with the errwrap and go-multierror libraries.
func (e *Error) WrappedErrors() []error {
if e == nil {
return nil
}
result := make([]error, len(e.Errors))
for i, e := range e.Errors {
result[i] = errors.New(e)
}
return result
}
func appendErrors(errors []string, err error) []string {
switch e := err.(type) {
case *Error:
return append(errors, e.Errors...)
default:
return append(errors, e.Error())
}
}

View file

@ -1,746 +0,0 @@
// The mapstructure package exposes functionality to convert an
// abitrary map[string]interface{} into a native Go structure.
//
// The Go structure can be arbitrarily complex, containing slices,
// other structs, etc. and the decoder will properly decode nested
// maps and so on into the proper structures in the native Go struct.
// See the examples to see what the decoder is capable of.
package mapstructure
import (
"errors"
"fmt"
"reflect"
"sort"
"strconv"
"strings"
)
// DecodeHookFunc is the callback function that can be used for
// data transformations. See "DecodeHook" in the DecoderConfig
// struct.
//
// The type should be DecodeHookFuncType or DecodeHookFuncKind.
// Either is accepted. Types are a superset of Kinds (Types can return
// Kinds) and are generally a richer thing to use, but Kinds are simpler
// if you only need those.
//
// The reason DecodeHookFunc is multi-typed is for backwards compatibility:
// we started with Kinds and then realized Types were the better solution,
// but have a promise to not break backwards compat so we now support
// both.
type DecodeHookFunc interface{}
type DecodeHookFuncType func(reflect.Type, reflect.Type, interface{}) (interface{}, error)
type DecodeHookFuncKind func(reflect.Kind, reflect.Kind, interface{}) (interface{}, error)
// DecoderConfig is the configuration that is used to create a new decoder
// and allows customization of various aspects of decoding.
type DecoderConfig struct {
// DecodeHook, if set, will be called before any decoding and any
// type conversion (if WeaklyTypedInput is on). This lets you modify
// the values before they're set down onto the resulting struct.
//
// If an error is returned, the entire decode will fail with that
// error.
DecodeHook DecodeHookFunc
// If ErrorUnused is true, then it is an error for there to exist
// keys in the original map that were unused in the decoding process
// (extra keys).
ErrorUnused bool
// ZeroFields, if set to true, will zero fields before writing them.
// For example, a map will be emptied before decoded values are put in
// it. If this is false, a map will be merged.
ZeroFields bool
// If WeaklyTypedInput is true, the decoder will make the following
// "weak" conversions:
//
// - bools to string (true = "1", false = "0")
// - numbers to string (base 10)
// - bools to int/uint (true = 1, false = 0)
// - strings to int/uint (base implied by prefix)
// - int to bool (true if value != 0)
// - string to bool (accepts: 1, t, T, TRUE, true, True, 0, f, F,
// FALSE, false, False. Anything else is an error)
// - empty array = empty map and vice versa
// - negative numbers to overflowed uint values (base 10)
//
WeaklyTypedInput bool
// Metadata is the struct that will contain extra metadata about
// the decoding. If this is nil, then no metadata will be tracked.
Metadata *Metadata
// Result is a pointer to the struct that will contain the decoded
// value.
Result interface{}
// The tag name that mapstructure reads for field names. This
// defaults to "mapstructure"
TagName string
}
// A Decoder takes a raw interface value and turns it into structured
// data, keeping track of rich error information along the way in case
// anything goes wrong. Unlike the basic top-level Decode method, you can
// more finely control how the Decoder behaves using the DecoderConfig
// structure. The top-level Decode method is just a convenience that sets
// up the most basic Decoder.
type Decoder struct {
config *DecoderConfig
}
// Metadata contains information about decoding a structure that
// is tedious or difficult to get otherwise.
type Metadata struct {
// Keys are the keys of the structure which were successfully decoded
Keys []string
// Unused is a slice of keys that were found in the raw value but
// weren't decoded since there was no matching field in the result interface
Unused []string
}
// Decode takes a map and uses reflection to convert it into the
// given Go native structure. val must be a pointer to a struct.
func Decode(m interface{}, rawVal interface{}) error {
config := &DecoderConfig{
Metadata: nil,
Result: rawVal,
}
decoder, err := NewDecoder(config)
if err != nil {
return err
}
return decoder.Decode(m)
}
// WeakDecode is the same as Decode but is shorthand to enable
// WeaklyTypedInput. See DecoderConfig for more info.
func WeakDecode(input, output interface{}) error {
config := &DecoderConfig{
Metadata: nil,
Result: output,
WeaklyTypedInput: true,
}
decoder, err := NewDecoder(config)
if err != nil {
return err
}
return decoder.Decode(input)
}
// NewDecoder returns a new decoder for the given configuration. Once
// a decoder has been returned, the same configuration must not be used
// again.
func NewDecoder(config *DecoderConfig) (*Decoder, error) {
val := reflect.ValueOf(config.Result)
if val.Kind() != reflect.Ptr {
return nil, errors.New("result must be a pointer")
}
val = val.Elem()
if !val.CanAddr() {
return nil, errors.New("result must be addressable (a pointer)")
}
if config.Metadata != nil {
if config.Metadata.Keys == nil {
config.Metadata.Keys = make([]string, 0)
}
if config.Metadata.Unused == nil {
config.Metadata.Unused = make([]string, 0)
}
}
if config.TagName == "" {
config.TagName = "mapstructure"
}
result := &Decoder{
config: config,
}
return result, nil
}
// Decode decodes the given raw interface to the target pointer specified
// by the configuration.
func (d *Decoder) Decode(raw interface{}) error {
return d.decode("", raw, reflect.ValueOf(d.config.Result).Elem())
}
// Decodes an unknown data type into a specific reflection value.
func (d *Decoder) decode(name string, data interface{}, val reflect.Value) error {
if data == nil {
// If the data is nil, then we don't set anything.
return nil
}
dataVal := reflect.ValueOf(data)
if !dataVal.IsValid() {
// If the data value is invalid, then we just set the value
// to be the zero value.
val.Set(reflect.Zero(val.Type()))
return nil
}
if d.config.DecodeHook != nil {
// We have a DecodeHook, so let's pre-process the data.
var err error
data, err = DecodeHookExec(
d.config.DecodeHook,
dataVal.Type(), val.Type(), data)
if err != nil {
return err
}
}
var err error
dataKind := getKind(val)
switch dataKind {
case reflect.Bool:
err = d.decodeBool(name, data, val)
case reflect.Interface:
err = d.decodeBasic(name, data, val)
case reflect.String:
err = d.decodeString(name, data, val)
case reflect.Int:
err = d.decodeInt(name, data, val)
case reflect.Uint:
err = d.decodeUint(name, data, val)
case reflect.Float32:
err = d.decodeFloat(name, data, val)
case reflect.Struct:
err = d.decodeStruct(name, data, val)
case reflect.Map:
err = d.decodeMap(name, data, val)
case reflect.Ptr:
err = d.decodePtr(name, data, val)
case reflect.Slice:
err = d.decodeSlice(name, data, val)
default:
// If we reached this point then we weren't able to decode it
return fmt.Errorf("%s: unsupported type: %s", name, dataKind)
}
// If we reached here, then we successfully decoded SOMETHING, so
// mark the key as used if we're tracking metadata.
if d.config.Metadata != nil && name != "" {
d.config.Metadata.Keys = append(d.config.Metadata.Keys, name)
}
return err
}
// This decodes a basic type (bool, int, string, etc.) and sets the
// value to "data" of that type.
func (d *Decoder) decodeBasic(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataValType := dataVal.Type()
if !dataValType.AssignableTo(val.Type()) {
return fmt.Errorf(
"'%s' expected type '%s', got '%s'",
name, val.Type(), dataValType)
}
val.Set(dataVal)
return nil
}
func (d *Decoder) decodeString(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
converted := true
switch {
case dataKind == reflect.String:
val.SetString(dataVal.String())
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetString("1")
} else {
val.SetString("0")
}
case dataKind == reflect.Int && d.config.WeaklyTypedInput:
val.SetString(strconv.FormatInt(dataVal.Int(), 10))
case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
val.SetString(strconv.FormatUint(dataVal.Uint(), 10))
case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
val.SetString(strconv.FormatFloat(dataVal.Float(), 'f', -1, 64))
case dataKind == reflect.Slice && d.config.WeaklyTypedInput:
dataType := dataVal.Type()
elemKind := dataType.Elem().Kind()
switch {
case elemKind == reflect.Uint8:
val.SetString(string(dataVal.Interface().([]uint8)))
default:
converted = false
}
default:
converted = false
}
if !converted {
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeInt(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Int:
val.SetInt(dataVal.Int())
case dataKind == reflect.Uint:
val.SetInt(int64(dataVal.Uint()))
case dataKind == reflect.Float32:
val.SetInt(int64(dataVal.Float()))
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetInt(1)
} else {
val.SetInt(0)
}
case dataKind == reflect.String && d.config.WeaklyTypedInput:
i, err := strconv.ParseInt(dataVal.String(), 0, val.Type().Bits())
if err == nil {
val.SetInt(i)
} else {
return fmt.Errorf("cannot parse '%s' as int: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeUint(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Int:
i := dataVal.Int()
if i < 0 && !d.config.WeaklyTypedInput {
return fmt.Errorf("cannot parse '%s', %d overflows uint",
name, i)
}
val.SetUint(uint64(i))
case dataKind == reflect.Uint:
val.SetUint(dataVal.Uint())
case dataKind == reflect.Float32:
f := dataVal.Float()
if f < 0 && !d.config.WeaklyTypedInput {
return fmt.Errorf("cannot parse '%s', %f overflows uint",
name, f)
}
val.SetUint(uint64(f))
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetUint(1)
} else {
val.SetUint(0)
}
case dataKind == reflect.String && d.config.WeaklyTypedInput:
i, err := strconv.ParseUint(dataVal.String(), 0, val.Type().Bits())
if err == nil {
val.SetUint(i)
} else {
return fmt.Errorf("cannot parse '%s' as uint: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeBool(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Bool:
val.SetBool(dataVal.Bool())
case dataKind == reflect.Int && d.config.WeaklyTypedInput:
val.SetBool(dataVal.Int() != 0)
case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
val.SetBool(dataVal.Uint() != 0)
case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
val.SetBool(dataVal.Float() != 0)
case dataKind == reflect.String && d.config.WeaklyTypedInput:
b, err := strconv.ParseBool(dataVal.String())
if err == nil {
val.SetBool(b)
} else if dataVal.String() == "" {
val.SetBool(false)
} else {
return fmt.Errorf("cannot parse '%s' as bool: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeFloat(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.ValueOf(data)
dataKind := getKind(dataVal)
switch {
case dataKind == reflect.Int:
val.SetFloat(float64(dataVal.Int()))
case dataKind == reflect.Uint:
val.SetFloat(float64(dataVal.Uint()))
case dataKind == reflect.Float32:
val.SetFloat(float64(dataVal.Float()))
case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
if dataVal.Bool() {
val.SetFloat(1)
} else {
val.SetFloat(0)
}
case dataKind == reflect.String && d.config.WeaklyTypedInput:
f, err := strconv.ParseFloat(dataVal.String(), val.Type().Bits())
if err == nil {
val.SetFloat(f)
} else {
return fmt.Errorf("cannot parse '%s' as float: %s", name, err)
}
default:
return fmt.Errorf(
"'%s' expected type '%s', got unconvertible type '%s'",
name, val.Type(), dataVal.Type())
}
return nil
}
func (d *Decoder) decodeMap(name string, data interface{}, val reflect.Value) error {
valType := val.Type()
valKeyType := valType.Key()
valElemType := valType.Elem()
// By default we overwrite keys in the current map
valMap := val
// If the map is nil or we're purposely zeroing fields, make a new map
if valMap.IsNil() || d.config.ZeroFields {
// Make a new map to hold our result
mapType := reflect.MapOf(valKeyType, valElemType)
valMap = reflect.MakeMap(mapType)
}
// Check input type
dataVal := reflect.Indirect(reflect.ValueOf(data))
if dataVal.Kind() != reflect.Map {
// Accept empty array/slice instead of an empty map in weakly typed mode
if d.config.WeaklyTypedInput &&
(dataVal.Kind() == reflect.Slice || dataVal.Kind() == reflect.Array) &&
dataVal.Len() == 0 {
val.Set(valMap)
return nil
} else {
return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind())
}
}
// Accumulate errors
errors := make([]string, 0)
for _, k := range dataVal.MapKeys() {
fieldName := fmt.Sprintf("%s[%s]", name, k)
// First decode the key into the proper type
currentKey := reflect.Indirect(reflect.New(valKeyType))
if err := d.decode(fieldName, k.Interface(), currentKey); err != nil {
errors = appendErrors(errors, err)
continue
}
// Next decode the data into the proper type
v := dataVal.MapIndex(k).Interface()
currentVal := reflect.Indirect(reflect.New(valElemType))
if err := d.decode(fieldName, v, currentVal); err != nil {
errors = appendErrors(errors, err)
continue
}
valMap.SetMapIndex(currentKey, currentVal)
}
// Set the built up map to the value
val.Set(valMap)
// If we had errors, return those
if len(errors) > 0 {
return &Error{errors}
}
return nil
}
func (d *Decoder) decodePtr(name string, data interface{}, val reflect.Value) error {
// Create an element of the concrete (non pointer) type and decode
// into that. Then set the value of the pointer to this type.
valType := val.Type()
valElemType := valType.Elem()
realVal := reflect.New(valElemType)
if err := d.decode(name, data, reflect.Indirect(realVal)); err != nil {
return err
}
val.Set(realVal)
return nil
}
func (d *Decoder) decodeSlice(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.Indirect(reflect.ValueOf(data))
dataValKind := dataVal.Kind()
valType := val.Type()
valElemType := valType.Elem()
sliceType := reflect.SliceOf(valElemType)
// Check input type
if dataValKind != reflect.Array && dataValKind != reflect.Slice {
// Accept empty map instead of array/slice in weakly typed mode
if d.config.WeaklyTypedInput && dataVal.Kind() == reflect.Map && dataVal.Len() == 0 {
val.Set(reflect.MakeSlice(sliceType, 0, 0))
return nil
} else {
return fmt.Errorf(
"'%s': source data must be an array or slice, got %s", name, dataValKind)
}
}
// Make a new slice to hold our result, same size as the original data.
valSlice := reflect.MakeSlice(sliceType, dataVal.Len(), dataVal.Len())
// Accumulate any errors
errors := make([]string, 0)
for i := 0; i < dataVal.Len(); i++ {
currentData := dataVal.Index(i).Interface()
currentField := valSlice.Index(i)
fieldName := fmt.Sprintf("%s[%d]", name, i)
if err := d.decode(fieldName, currentData, currentField); err != nil {
errors = appendErrors(errors, err)
}
}
// Finally, set the value to the slice we built up
val.Set(valSlice)
// If there were errors, we return those
if len(errors) > 0 {
return &Error{errors}
}
return nil
}
func (d *Decoder) decodeStruct(name string, data interface{}, val reflect.Value) error {
dataVal := reflect.Indirect(reflect.ValueOf(data))
// If the type of the value to write to and the data match directly,
// then we just set it directly instead of recursing into the structure.
if dataVal.Type() == val.Type() {
val.Set(dataVal)
return nil
}
dataValKind := dataVal.Kind()
if dataValKind != reflect.Map {
return fmt.Errorf("'%s' expected a map, got '%s'", name, dataValKind)
}
dataValType := dataVal.Type()
if kind := dataValType.Key().Kind(); kind != reflect.String && kind != reflect.Interface {
return fmt.Errorf(
"'%s' needs a map with string keys, has '%s' keys",
name, dataValType.Key().Kind())
}
dataValKeys := make(map[reflect.Value]struct{})
dataValKeysUnused := make(map[interface{}]struct{})
for _, dataValKey := range dataVal.MapKeys() {
dataValKeys[dataValKey] = struct{}{}
dataValKeysUnused[dataValKey.Interface()] = struct{}{}
}
errors := make([]string, 0)
// This slice will keep track of all the structs we'll be decoding.
// There can be more than one struct if there are embedded structs
// that are squashed.
structs := make([]reflect.Value, 1, 5)
structs[0] = val
// Compile the list of all the fields that we're going to be decoding
// from all the structs.
fields := make(map[*reflect.StructField]reflect.Value)
for len(structs) > 0 {
structVal := structs[0]
structs = structs[1:]
structType := structVal.Type()
for i := 0; i < structType.NumField(); i++ {
fieldType := structType.Field(i)
if fieldType.Anonymous {
fieldKind := fieldType.Type.Kind()
if fieldKind != reflect.Struct {
errors = appendErrors(errors,
fmt.Errorf("%s: unsupported type: %s", fieldType.Name, fieldKind))
continue
}
// We have an embedded field. We "squash" the fields down
// if specified in the tag.
squash := false
tagParts := strings.Split(fieldType.Tag.Get(d.config.TagName), ",")
for _, tag := range tagParts[1:] {
if tag == "squash" {
squash = true
break
}
}
if squash {
structs = append(structs, val.FieldByName(fieldType.Name))
continue
}
}
// Normal struct field, store it away
fields[&fieldType] = structVal.Field(i)
}
}
for fieldType, field := range fields {
fieldName := fieldType.Name
tagValue := fieldType.Tag.Get(d.config.TagName)
tagValue = strings.SplitN(tagValue, ",", 2)[0]
if tagValue != "" {
fieldName = tagValue
}
rawMapKey := reflect.ValueOf(fieldName)
rawMapVal := dataVal.MapIndex(rawMapKey)
if !rawMapVal.IsValid() {
// Do a slower search by iterating over each key and
// doing case-insensitive search.
for dataValKey, _ := range dataValKeys {
mK, ok := dataValKey.Interface().(string)
if !ok {
// Not a string key
continue
}
if strings.EqualFold(mK, fieldName) {
rawMapKey = dataValKey
rawMapVal = dataVal.MapIndex(dataValKey)
break
}
}
if !rawMapVal.IsValid() {
// There was no matching key in the map for the value in
// the struct. Just ignore.
continue
}
}
// Delete the key we're using from the unused map so we stop tracking
delete(dataValKeysUnused, rawMapKey.Interface())
if !field.IsValid() {
// This should never happen
panic("field is not valid")
}
// If we can't set the field, then it is unexported or something,
// and we just continue onwards.
if !field.CanSet() {
continue
}
// If the name is empty string, then we're at the root, and we
// don't dot-join the fields.
if name != "" {
fieldName = fmt.Sprintf("%s.%s", name, fieldName)
}
if err := d.decode(fieldName, rawMapVal.Interface(), field); err != nil {
errors = appendErrors(errors, err)
}
}
if d.config.ErrorUnused && len(dataValKeysUnused) > 0 {
keys := make([]string, 0, len(dataValKeysUnused))
for rawKey, _ := range dataValKeysUnused {
keys = append(keys, rawKey.(string))
}
sort.Strings(keys)
err := fmt.Errorf("'%s' has invalid keys: %s", name, strings.Join(keys, ", "))
errors = appendErrors(errors, err)
}
if len(errors) > 0 {
return &Error{errors}
}
// Add the unused keys to the list of unused keys if we're tracking metadata
if d.config.Metadata != nil {
for rawKey, _ := range dataValKeysUnused {
key := rawKey.(string)
if name != "" {
key = fmt.Sprintf("%s.%s", name, key)
}
d.config.Metadata.Unused = append(d.config.Metadata.Unused, key)
}
}
return nil
}
func getKind(val reflect.Value) reflect.Kind {
kind := val.Kind()
switch {
case kind >= reflect.Int && kind <= reflect.Int64:
return reflect.Int
case kind >= reflect.Uint && kind <= reflect.Uint64:
return reflect.Uint
case kind >= reflect.Float32 && kind <= reflect.Float64:
return reflect.Float32
default:
return kind
}
}

View file

@ -1,28 +0,0 @@
Copyright (c) 2012 Alex Ogier. All rights reserved.
Copyright (c) 2012 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View file

@ -1,83 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// optional interface to indicate boolean flags that can be
// supplied without "=value" text
type boolFlag interface {
Value
IsBoolFlag() bool
}
// -- bool Value
type boolValue bool
func newBoolValue(val bool, p *bool) *boolValue {
*p = val
return (*boolValue)(p)
}
func (b *boolValue) Set(s string) error {
v, err := strconv.ParseBool(s)
*b = boolValue(v)
return err
}
func (b *boolValue) Type() string {
return "bool"
}
func (b *boolValue) String() string { return fmt.Sprintf("%v", *b) }
func (b *boolValue) IsBoolFlag() bool { return true }
// BoolVar defines a bool flag with specified name, default value, and usage string.
// The argument p points to a bool variable in which to store the value of the flag.
func (f *FlagSet) BoolVar(p *bool, name string, value bool, usage string) {
f.VarP(newBoolValue(value, p), name, "", usage)
}
// Like BoolVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolVarP(p *bool, name, shorthand string, value bool, usage string) {
f.VarP(newBoolValue(value, p), name, shorthand, usage)
}
// BoolVar defines a bool flag with specified name, default value, and usage string.
// The argument p points to a bool variable in which to store the value of the flag.
func BoolVar(p *bool, name string, value bool, usage string) {
CommandLine.VarP(newBoolValue(value, p), name, "", usage)
}
// Like BoolVar, but accepts a shorthand letter that can be used after a single dash.
func BoolVarP(p *bool, name, shorthand string, value bool, usage string) {
CommandLine.VarP(newBoolValue(value, p), name, shorthand, usage)
}
// Bool defines a bool flag with specified name, default value, and usage string.
// The return value is the address of a bool variable that stores the value of the flag.
func (f *FlagSet) Bool(name string, value bool, usage string) *bool {
p := new(bool)
f.BoolVarP(p, name, "", value, usage)
return p
}
// Like Bool, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolP(name, shorthand string, value bool, usage string) *bool {
p := new(bool)
f.BoolVarP(p, name, shorthand, value, usage)
return p
}
// Bool defines a bool flag with specified name, default value, and usage string.
// The return value is the address of a bool variable that stores the value of the flag.
func Bool(name string, value bool, usage string) *bool {
return CommandLine.BoolP(name, "", value, usage)
}
// Like Bool, but accepts a shorthand letter that can be used after a single dash.
func BoolP(name, shorthand string, value bool, usage string) *bool {
return CommandLine.BoolP(name, shorthand, value, usage)
}

View file

@ -1,71 +0,0 @@
package pflag
import "time"
// -- time.Duration Value
type durationValue time.Duration
func newDurationValue(val time.Duration, p *time.Duration) *durationValue {
*p = val
return (*durationValue)(p)
}
func (d *durationValue) Set(s string) error {
v, err := time.ParseDuration(s)
*d = durationValue(v)
return err
}
func (d *durationValue) Type() string {
return "duration"
}
func (d *durationValue) String() string { return (*time.Duration)(d).String() }
// DurationVar defines a time.Duration flag with specified name, default value, and usage string.
// The argument p points to a time.Duration variable in which to store the value of the flag.
func (f *FlagSet) DurationVar(p *time.Duration, name string, value time.Duration, usage string) {
f.VarP(newDurationValue(value, p), name, "", usage)
}
// Like DurationVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationVarP(p *time.Duration, name, shorthand string, value time.Duration, usage string) {
f.VarP(newDurationValue(value, p), name, shorthand, usage)
}
// DurationVar defines a time.Duration flag with specified name, default value, and usage string.
// The argument p points to a time.Duration variable in which to store the value of the flag.
func DurationVar(p *time.Duration, name string, value time.Duration, usage string) {
CommandLine.VarP(newDurationValue(value, p), name, "", usage)
}
// Like DurationVar, but accepts a shorthand letter that can be used after a single dash.
func DurationVarP(p *time.Duration, name, shorthand string, value time.Duration, usage string) {
CommandLine.VarP(newDurationValue(value, p), name, shorthand, usage)
}
// Duration defines a time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a time.Duration variable that stores the value of the flag.
func (f *FlagSet) Duration(name string, value time.Duration, usage string) *time.Duration {
p := new(time.Duration)
f.DurationVarP(p, name, "", value, usage)
return p
}
// Like Duration, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationP(name, shorthand string, value time.Duration, usage string) *time.Duration {
p := new(time.Duration)
f.DurationVarP(p, name, shorthand, value, usage)
return p
}
// Duration defines a time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a time.Duration variable that stores the value of the flag.
func Duration(name string, value time.Duration, usage string) *time.Duration {
return CommandLine.DurationP(name, "", value, usage)
}
// Like Duration, but accepts a shorthand letter that can be used after a single dash.
func DurationP(name, shorthand string, value time.Duration, usage string) *time.Duration {
return CommandLine.DurationP(name, shorthand, value, usage)
}

View file

@ -1,695 +0,0 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
pflag is a drop-in replacement for Go's flag package, implementing
POSIX/GNU-style --flags.
pflag is compatible with the GNU extensions to the POSIX recommendations
for command-line options. See
http://www.gnu.org/software/libc/manual/html_node/Argument-Syntax.html
Usage:
pflag is a drop-in replacement of Go's native flag package. If you import
pflag under the name "flag" then all code should continue to function
with no changes.
import flag "github.com/ogier/pflag"
There is one exception to this: if you directly instantiate the Flag struct
there is one more field "Shorthand" that you will need to set.
Most code never instantiates this struct directly, and instead uses
functions such as String(), BoolVar(), and Var(), and is therefore
unaffected.
Define flags using flag.String(), Bool(), Int(), etc.
This declares an integer flag, -flagname, stored in the pointer ip, with type *int.
var ip = flag.Int("flagname", 1234, "help message for flagname")
If you like, you can bind the flag to a variable using the Var() functions.
var flagvar int
func init() {
flag.IntVar(&flagvar, "flagname", 1234, "help message for flagname")
}
Or you can create custom flags that satisfy the Value interface (with
pointer receivers) and couple them to flag parsing by
flag.Var(&flagVal, "name", "help message for flagname")
For such flags, the default value is just the initial value of the variable.
After all flags are defined, call
flag.Parse()
to parse the command line into the defined flags.
Flags may then be used directly. If you're using the flags themselves,
they are all pointers; if you bind to variables, they're values.
fmt.Println("ip has value ", *ip)
fmt.Println("flagvar has value ", flagvar)
After parsing, the arguments after the flag are available as the
slice flag.Args() or individually as flag.Arg(i).
The arguments are indexed from 0 through flag.NArg()-1.
The pflag package also defines some new functions that are not in flag,
that give one-letter shorthands for flags. You can use these by appending
'P' to the name of any function that defines a flag.
var ip = flag.IntP("flagname", "f", 1234, "help message")
var flagvar bool
func init() {
flag.BoolVarP("boolname", "b", true, "help message")
}
flag.VarP(&flagVar, "varname", "v", 1234, "help message")
Shorthand letters can be used with single dashes on the command line.
Boolean shorthand flags can be combined with other shorthand flags.
Command line flag syntax:
--flag // boolean flags only
--flag=x
Unlike the flag package, a single dash before an option means something
different than a double dash. Single dashes signify a series of shorthand
letters for flags. All but the last shorthand letter must be boolean flags.
// boolean flags
-f
-abc
// non-boolean flags
-n 1234
-Ifile
// mixed
-abcs "hello"
-abcn1234
Flag parsing stops after the terminator "--". Unlike the flag package,
flags can be interspersed with arguments anywhere on the command line
before this terminator.
Integer flags accept 1234, 0664, 0x1234 and may be negative.
Boolean flags (in their long form) accept 1, 0, t, f, true, false,
TRUE, FALSE, True, False.
Duration flags accept any input valid for time.ParseDuration.
The default set of command-line flags is controlled by
top-level functions. The FlagSet type allows one to define
independent sets of flags, such as to implement subcommands
in a command-line interface. The methods of FlagSet are
analogous to the top-level functions for the command-line
flag set.
*/
package pflag
import (
"bytes"
"errors"
"fmt"
"io"
"os"
"sort"
"strings"
)
// ErrHelp is the error returned if the flag -help is invoked but no such flag is defined.
var ErrHelp = errors.New("pflag: help requested")
// ErrorHandling defines how to handle flag parsing errors.
type ErrorHandling int
const (
ContinueOnError ErrorHandling = iota
ExitOnError
PanicOnError
)
// NormalizedName is a flag name that has been normalized according to rules
// for the FlagSet (e.g. making '-' and '_' equivalent).
type NormalizedName string
// A FlagSet represents a set of defined flags.
type FlagSet struct {
// Usage is the function called when an error occurs while parsing flags.
// The field is a function (not a method) that may be changed to point to
// a custom error handler.
Usage func()
name string
parsed bool
actual map[NormalizedName]*Flag
formal map[NormalizedName]*Flag
shorthands map[byte]*Flag
args []string // arguments after flags
exitOnError bool // does the program exit if there's an error?
errorHandling ErrorHandling
output io.Writer // nil means stderr; use out() accessor
interspersed bool // allow interspersed option/non-option args
normalizeNameFunc func(f *FlagSet, name string) NormalizedName
}
// A Flag represents the state of a flag.
type Flag struct {
Name string // name as it appears on command line
Shorthand string // one-letter abbreviated flag
Usage string // help message
Value Value // value as set
DefValue string // default value (as text); for usage message
Changed bool // If the user set the value (or if left to default)
Deprecated string // If this flag is deprecated, this string is the new or now thing to use
Annotations map[string][]string // used by cobra.Command bash autocomple code
}
// Value is the interface to the dynamic value stored in a flag.
// (The default value is represented as a string.)
type Value interface {
String() string
Set(string) error
Type() string
}
// sortFlags returns the flags as a slice in lexicographical sorted order.
func sortFlags(flags map[NormalizedName]*Flag) []*Flag {
list := make(sort.StringSlice, len(flags))
i := 0
for k := range flags {
list[i] = string(k)
i++
}
list.Sort()
result := make([]*Flag, len(list))
for i, name := range list {
result[i] = flags[NormalizedName(name)]
}
return result
}
func (f *FlagSet) SetNormalizeFunc(n func(f *FlagSet, name string) NormalizedName) {
f.normalizeNameFunc = n
for k, v := range f.formal {
delete(f.formal, k)
nname := f.normalizeFlagName(string(k))
f.formal[nname] = v
v.Name = string(nname)
}
}
func (f *FlagSet) GetNormalizeFunc() func(f *FlagSet, name string) NormalizedName {
if f.normalizeNameFunc != nil {
return f.normalizeNameFunc
}
return func(f *FlagSet, name string) NormalizedName { return NormalizedName(name) }
}
func (f *FlagSet) normalizeFlagName(name string) NormalizedName {
n := f.GetNormalizeFunc()
return n(f, name)
}
func (f *FlagSet) out() io.Writer {
if f.output == nil {
return os.Stderr
}
return f.output
}
// SetOutput sets the destination for usage and error messages.
// If output is nil, os.Stderr is used.
func (f *FlagSet) SetOutput(output io.Writer) {
f.output = output
}
// VisitAll visits the flags in lexicographical order, calling fn for each.
// It visits all flags, even those not set.
func (f *FlagSet) VisitAll(fn func(*Flag)) {
for _, flag := range sortFlags(f.formal) {
fn(flag)
}
}
func (f *FlagSet) HasFlags() bool {
return len(f.formal) > 0
}
// VisitAll visits the command-line flags in lexicographical order, calling
// fn for each. It visits all flags, even those not set.
func VisitAll(fn func(*Flag)) {
CommandLine.VisitAll(fn)
}
// Visit visits the flags in lexicographical order, calling fn for each.
// It visits only those flags that have been set.
func (f *FlagSet) Visit(fn func(*Flag)) {
for _, flag := range sortFlags(f.actual) {
fn(flag)
}
}
// Visit visits the command-line flags in lexicographical order, calling fn
// for each. It visits only those flags that have been set.
func Visit(fn func(*Flag)) {
CommandLine.Visit(fn)
}
// Lookup returns the Flag structure of the named flag, returning nil if none exists.
func (f *FlagSet) Lookup(name string) *Flag {
return f.lookup(f.normalizeFlagName(name))
}
// lookup returns the Flag structure of the named flag, returning nil if none exists.
func (f *FlagSet) lookup(name NormalizedName) *Flag {
return f.formal[name]
}
// Mark a flag deprecated in your program
func (f *FlagSet) MarkDeprecated(name string, usageMessage string) error {
flag := f.Lookup(name)
if flag == nil {
return fmt.Errorf("flag %q does not exist", name)
}
flag.Deprecated = usageMessage
return nil
}
// Lookup returns the Flag structure of the named command-line flag,
// returning nil if none exists.
func Lookup(name string) *Flag {
return CommandLine.Lookup(name)
}
// Set sets the value of the named flag.
func (f *FlagSet) Set(name, value string) error {
normalName := f.normalizeFlagName(name)
flag, ok := f.formal[normalName]
if !ok {
return fmt.Errorf("no such flag -%v", name)
}
err := flag.Value.Set(value)
if err != nil {
return err
}
if f.actual == nil {
f.actual = make(map[NormalizedName]*Flag)
}
f.actual[normalName] = flag
flag.Changed = true
if len(flag.Deprecated) > 0 {
fmt.Fprintf(os.Stderr, "Flag --%s has been deprecated, %s\n", flag.Name, flag.Deprecated)
}
return nil
}
// Set sets the value of the named command-line flag.
func Set(name, value string) error {
return CommandLine.Set(name, value)
}
// PrintDefaults prints, to standard error unless configured
// otherwise, the default values of all defined flags in the set.
func (f *FlagSet) PrintDefaults() {
f.VisitAll(func(flag *Flag) {
if len(flag.Deprecated) > 0 {
return
}
format := "--%s=%s: %s\n"
if _, ok := flag.Value.(*stringValue); ok {
// put quotes on the value
format = "--%s=%q: %s\n"
}
if len(flag.Shorthand) > 0 {
format = " -%s, " + format
} else {
format = " %s " + format
}
fmt.Fprintf(f.out(), format, flag.Shorthand, flag.Name, flag.DefValue, flag.Usage)
})
}
func (f *FlagSet) FlagUsages() string {
x := new(bytes.Buffer)
f.VisitAll(func(flag *Flag) {
if len(flag.Deprecated) > 0 {
return
}
format := "--%s=%s: %s\n"
if _, ok := flag.Value.(*stringValue); ok {
// put quotes on the value
format = "--%s=%q: %s\n"
}
if len(flag.Shorthand) > 0 {
format = " -%s, " + format
} else {
format = " %s " + format
}
fmt.Fprintf(x, format, flag.Shorthand, flag.Name, flag.DefValue, flag.Usage)
})
return x.String()
}
// PrintDefaults prints to standard error the default values of all defined command-line flags.
func PrintDefaults() {
CommandLine.PrintDefaults()
}
// defaultUsage is the default function to print a usage message.
func defaultUsage(f *FlagSet) {
fmt.Fprintf(f.out(), "Usage of %s:\n", f.name)
f.PrintDefaults()
}
// NOTE: Usage is not just defaultUsage(CommandLine)
// because it serves (via godoc flag Usage) as the example
// for how to write your own usage function.
// Usage prints to standard error a usage message documenting all defined command-line flags.
// The function is a variable that may be changed to point to a custom function.
var Usage = func() {
fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
PrintDefaults()
}
// NFlag returns the number of flags that have been set.
func (f *FlagSet) NFlag() int { return len(f.actual) }
// NFlag returns the number of command-line flags that have been set.
func NFlag() int { return len(CommandLine.actual) }
// Arg returns the i'th argument. Arg(0) is the first remaining argument
// after flags have been processed.
func (f *FlagSet) Arg(i int) string {
if i < 0 || i >= len(f.args) {
return ""
}
return f.args[i]
}
// Arg returns the i'th command-line argument. Arg(0) is the first remaining argument
// after flags have been processed.
func Arg(i int) string {
return CommandLine.Arg(i)
}
// NArg is the number of arguments remaining after flags have been processed.
func (f *FlagSet) NArg() int { return len(f.args) }
// NArg is the number of arguments remaining after flags have been processed.
func NArg() int { return len(CommandLine.args) }
// Args returns the non-flag arguments.
func (f *FlagSet) Args() []string { return f.args }
// Args returns the non-flag command-line arguments.
func Args() []string { return CommandLine.args }
// Var defines a flag with the specified name and usage string. The type and
// value of the flag are represented by the first argument, of type Value, which
// typically holds a user-defined implementation of Value. For instance, the
// caller could create a flag that turns a comma-separated string into a slice
// of strings by giving the slice the methods of Value; in particular, Set would
// decompose the comma-separated string into the slice.
func (f *FlagSet) Var(value Value, name string, usage string) {
f.VarP(value, name, "", usage)
}
// Like Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) VarP(value Value, name, shorthand, usage string) {
// Remember the default value as a string; it won't change.
flag := &Flag{
Name: name,
Shorthand: shorthand,
Usage: usage,
Value: value,
DefValue: value.String(),
}
f.AddFlag(flag)
}
func (f *FlagSet) AddFlag(flag *Flag) {
// Call normalizeFlagName function only once
var normalizedFlagName NormalizedName = f.normalizeFlagName(flag.Name)
_, alreadythere := f.formal[normalizedFlagName]
if alreadythere {
msg := fmt.Sprintf("%s flag redefined: %s", f.name, flag.Name)
fmt.Fprintln(f.out(), msg)
panic(msg) // Happens only if flags are declared with identical names
}
if f.formal == nil {
f.formal = make(map[NormalizedName]*Flag)
}
flag.Name = string(normalizedFlagName)
f.formal[normalizedFlagName] = flag
if len(flag.Shorthand) == 0 {
return
}
if len(flag.Shorthand) > 1 {
fmt.Fprintf(f.out(), "%s shorthand more than ASCII character: %s\n", f.name, flag.Shorthand)
panic("shorthand is more than one character")
}
if f.shorthands == nil {
f.shorthands = make(map[byte]*Flag)
}
c := flag.Shorthand[0]
old, alreadythere := f.shorthands[c]
if alreadythere {
fmt.Fprintf(f.out(), "%s shorthand reused: %q for %s already used for %s\n", f.name, c, flag.Name, old.Name)
panic("shorthand redefinition")
}
f.shorthands[c] = flag
}
// Var defines a flag with the specified name and usage string. The type and
// value of the flag are represented by the first argument, of type Value, which
// typically holds a user-defined implementation of Value. For instance, the
// caller could create a flag that turns a comma-separated string into a slice
// of strings by giving the slice the methods of Value; in particular, Set would
// decompose the comma-separated string into the slice.
func Var(value Value, name string, usage string) {
CommandLine.VarP(value, name, "", usage)
}
// Like Var, but accepts a shorthand letter that can be used after a single dash.
func VarP(value Value, name, shorthand, usage string) {
CommandLine.VarP(value, name, shorthand, usage)
}
// failf prints to standard error a formatted error and usage message and
// returns the error.
func (f *FlagSet) failf(format string, a ...interface{}) error {
err := fmt.Errorf(format, a...)
fmt.Fprintln(f.out(), err)
f.usage()
return err
}
// usage calls the Usage method for the flag set, or the usage function if
// the flag set is CommandLine.
func (f *FlagSet) usage() {
if f == CommandLine {
Usage()
} else if f.Usage == nil {
defaultUsage(f)
} else {
f.Usage()
}
}
func (f *FlagSet) setFlag(flag *Flag, value string, origArg string) error {
if err := flag.Value.Set(value); err != nil {
return f.failf("invalid argument %q for %s: %v", value, origArg, err)
}
// mark as visited for Visit()
if f.actual == nil {
f.actual = make(map[NormalizedName]*Flag)
}
f.actual[f.normalizeFlagName(flag.Name)] = flag
flag.Changed = true
if len(flag.Deprecated) > 0 {
fmt.Fprintf(os.Stderr, "Flag --%s has been deprecated, %s\n", flag.Name, flag.Deprecated)
}
return nil
}
func (f *FlagSet) parseLongArg(s string, args []string) (a []string, err error) {
a = args
name := s[2:]
if len(name) == 0 || name[0] == '-' || name[0] == '=' {
err = f.failf("bad flag syntax: %s", s)
return
}
split := strings.SplitN(name, "=", 2)
name = split[0]
flag, alreadythere := f.formal[f.normalizeFlagName(name)]
if !alreadythere {
if name == "help" { // special case for nice help message.
f.usage()
return a, ErrHelp
}
err = f.failf("unknown flag: --%s", name)
return
}
var value string
if len(split) == 2 {
// '--flag=arg'
value = split[1]
} else if bv, ok := flag.Value.(boolFlag); ok && bv.IsBoolFlag() {
// '--flag' (where flag is a bool)
value = "true"
} else {
// '--flag' (where flag was not a bool)
err = f.failf("flag needs an argument: %s", s)
return
}
err = f.setFlag(flag, value, s)
return
}
func (f *FlagSet) parseSingleShortArg(shorthands string, args []string) (outShorts string, outArgs []string, err error) {
outArgs = args
outShorts = shorthands[1:]
c := shorthands[0]
flag, alreadythere := f.shorthands[c]
if !alreadythere {
if c == 'h' { // special case for nice help message.
f.usage()
err = ErrHelp
return
}
//TODO continue on error
err = f.failf("unknown shorthand flag: %q in -%s", c, shorthands)
return
}
var value string
if len(shorthands) > 2 && shorthands[1] == '=' {
value = shorthands[2:]
outShorts = ""
} else if bv, ok := flag.Value.(boolFlag); ok && bv.IsBoolFlag() {
value = "true"
} else if len(shorthands) > 1 {
value = shorthands[1:]
outShorts = ""
} else if len(args) > 0 {
value = args[0]
outArgs = args[1:]
} else {
err = f.failf("flag needs an argument: %q in -%s", c, shorthands)
return
}
err = f.setFlag(flag, value, shorthands)
return
}
func (f *FlagSet) parseShortArg(s string, args []string) (a []string, err error) {
a = args
shorthands := s[1:]
for len(shorthands) > 0 {
shorthands, a, err = f.parseSingleShortArg(shorthands, args)
if err != nil {
return
}
}
return
}
func (f *FlagSet) parseArgs(args []string) (err error) {
for len(args) > 0 {
s := args[0]
args = args[1:]
if len(s) == 0 || s[0] != '-' || len(s) == 1 {
if !f.interspersed {
f.args = append(f.args, s)
f.args = append(f.args, args...)
return nil
}
f.args = append(f.args, s)
continue
}
if s[1] == '-' {
if len(s) == 2 { // "--" terminates the flags
f.args = append(f.args, args...)
break
}
args, err = f.parseLongArg(s, args)
} else {
args, err = f.parseShortArg(s, args)
}
if err != nil {
return
}
}
return
}
// Parse parses flag definitions from the argument list, which should not
// include the command name. Must be called after all flags in the FlagSet
// are defined and before flags are accessed by the program.
// The return value will be ErrHelp if -help was set but not defined.
func (f *FlagSet) Parse(arguments []string) error {
f.parsed = true
f.args = make([]string, 0, len(arguments))
err := f.parseArgs(arguments)
if err != nil {
switch f.errorHandling {
case ContinueOnError:
return err
case ExitOnError:
os.Exit(2)
case PanicOnError:
panic(err)
}
}
return nil
}
// Parsed reports whether f.Parse has been called.
func (f *FlagSet) Parsed() bool {
return f.parsed
}
// Parse parses the command-line flags from os.Args[1:]. Must be called
// after all flags are defined and before flags are accessed by the program.
func Parse() {
// Ignore errors; CommandLine is set for ExitOnError.
CommandLine.Parse(os.Args[1:])
}
// Whether to support interspersed option/non-option arguments.
func SetInterspersed(interspersed bool) {
CommandLine.SetInterspersed(interspersed)
}
// Parsed returns true if the command-line flags have been parsed.
func Parsed() bool {
return CommandLine.Parsed()
}
// The default set of command-line flags, parsed from os.Args.
var CommandLine = NewFlagSet(os.Args[0], ExitOnError)
// NewFlagSet returns a new, empty flag set with the specified name and
// error handling property.
func NewFlagSet(name string, errorHandling ErrorHandling) *FlagSet {
f := &FlagSet{
name: name,
errorHandling: errorHandling,
interspersed: true,
}
return f
}
// Whether to support interspersed option/non-option arguments.
func (f *FlagSet) SetInterspersed(interspersed bool) {
f.interspersed = interspersed
}
// Init sets the name and error handling property for a flag set.
// By default, the zero FlagSet uses an empty name and the
// ContinueOnError error handling policy.
func (f *FlagSet) Init(name string, errorHandling ErrorHandling) {
f.name = name
f.errorHandling = errorHandling
}

View file

@ -1,74 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- float32 Value
type float32Value float32
func newFloat32Value(val float32, p *float32) *float32Value {
*p = val
return (*float32Value)(p)
}
func (f *float32Value) Set(s string) error {
v, err := strconv.ParseFloat(s, 32)
*f = float32Value(v)
return err
}
func (f *float32Value) Type() string {
return "float32"
}
func (f *float32Value) String() string { return fmt.Sprintf("%v", *f) }
// Float32Var defines a float32 flag with specified name, default value, and usage string.
// The argument p points to a float32 variable in which to store the value of the flag.
func (f *FlagSet) Float32Var(p *float32, name string, value float32, usage string) {
f.VarP(newFloat32Value(value, p), name, "", usage)
}
// Like Float32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32VarP(p *float32, name, shorthand string, value float32, usage string) {
f.VarP(newFloat32Value(value, p), name, shorthand, usage)
}
// Float32Var defines a float32 flag with specified name, default value, and usage string.
// The argument p points to a float32 variable in which to store the value of the flag.
func Float32Var(p *float32, name string, value float32, usage string) {
CommandLine.VarP(newFloat32Value(value, p), name, "", usage)
}
// Like Float32Var, but accepts a shorthand letter that can be used after a single dash.
func Float32VarP(p *float32, name, shorthand string, value float32, usage string) {
CommandLine.VarP(newFloat32Value(value, p), name, shorthand, usage)
}
// Float32 defines a float32 flag with specified name, default value, and usage string.
// The return value is the address of a float32 variable that stores the value of the flag.
func (f *FlagSet) Float32(name string, value float32, usage string) *float32 {
p := new(float32)
f.Float32VarP(p, name, "", value, usage)
return p
}
// Like Float32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32P(name, shorthand string, value float32, usage string) *float32 {
p := new(float32)
f.Float32VarP(p, name, shorthand, value, usage)
return p
}
// Float32 defines a float32 flag with specified name, default value, and usage string.
// The return value is the address of a float32 variable that stores the value of the flag.
func Float32(name string, value float32, usage string) *float32 {
return CommandLine.Float32P(name, "", value, usage)
}
// Like Float32, but accepts a shorthand letter that can be used after a single dash.
func Float32P(name, shorthand string, value float32, usage string) *float32 {
return CommandLine.Float32P(name, shorthand, value, usage)
}

View file

@ -1,74 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- float64 Value
type float64Value float64
func newFloat64Value(val float64, p *float64) *float64Value {
*p = val
return (*float64Value)(p)
}
func (f *float64Value) Set(s string) error {
v, err := strconv.ParseFloat(s, 64)
*f = float64Value(v)
return err
}
func (f *float64Value) Type() string {
return "float64"
}
func (f *float64Value) String() string { return fmt.Sprintf("%v", *f) }
// Float64Var defines a float64 flag with specified name, default value, and usage string.
// The argument p points to a float64 variable in which to store the value of the flag.
func (f *FlagSet) Float64Var(p *float64, name string, value float64, usage string) {
f.VarP(newFloat64Value(value, p), name, "", usage)
}
// Like Float64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64VarP(p *float64, name, shorthand string, value float64, usage string) {
f.VarP(newFloat64Value(value, p), name, shorthand, usage)
}
// Float64Var defines a float64 flag with specified name, default value, and usage string.
// The argument p points to a float64 variable in which to store the value of the flag.
func Float64Var(p *float64, name string, value float64, usage string) {
CommandLine.VarP(newFloat64Value(value, p), name, "", usage)
}
// Like Float64Var, but accepts a shorthand letter that can be used after a single dash.
func Float64VarP(p *float64, name, shorthand string, value float64, usage string) {
CommandLine.VarP(newFloat64Value(value, p), name, shorthand, usage)
}
// Float64 defines a float64 flag with specified name, default value, and usage string.
// The return value is the address of a float64 variable that stores the value of the flag.
func (f *FlagSet) Float64(name string, value float64, usage string) *float64 {
p := new(float64)
f.Float64VarP(p, name, "", value, usage)
return p
}
// Like Float64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64P(name, shorthand string, value float64, usage string) *float64 {
p := new(float64)
f.Float64VarP(p, name, shorthand, value, usage)
return p
}
// Float64 defines a float64 flag with specified name, default value, and usage string.
// The return value is the address of a float64 variable that stores the value of the flag.
func Float64(name string, value float64, usage string) *float64 {
return CommandLine.Float64P(name, "", value, usage)
}
// Like Float64, but accepts a shorthand letter that can be used after a single dash.
func Float64P(name, shorthand string, value float64, usage string) *float64 {
return CommandLine.Float64P(name, shorthand, value, usage)
}

View file

@ -1,74 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- int Value
type intValue int
func newIntValue(val int, p *int) *intValue {
*p = val
return (*intValue)(p)
}
func (i *intValue) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
*i = intValue(v)
return err
}
func (i *intValue) Type() string {
return "int"
}
func (i *intValue) String() string { return fmt.Sprintf("%v", *i) }
// IntVar defines an int flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
func (f *FlagSet) IntVar(p *int, name string, value int, usage string) {
f.VarP(newIntValue(value, p), name, "", usage)
}
// Like IntVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntVarP(p *int, name, shorthand string, value int, usage string) {
f.VarP(newIntValue(value, p), name, shorthand, usage)
}
// IntVar defines an int flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
func IntVar(p *int, name string, value int, usage string) {
CommandLine.VarP(newIntValue(value, p), name, "", usage)
}
// Like IntVar, but accepts a shorthand letter that can be used after a single dash.
func IntVarP(p *int, name, shorthand string, value int, usage string) {
CommandLine.VarP(newIntValue(value, p), name, shorthand, usage)
}
// Int defines an int flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
func (f *FlagSet) Int(name string, value int, usage string) *int {
p := new(int)
f.IntVarP(p, name, "", value, usage)
return p
}
// Like Int, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntP(name, shorthand string, value int, usage string) *int {
p := new(int)
f.IntVarP(p, name, shorthand, value, usage)
return p
}
// Int defines an int flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
func Int(name string, value int, usage string) *int {
return CommandLine.IntP(name, "", value, usage)
}
// Like Int, but accepts a shorthand letter that can be used after a single dash.
func IntP(name, shorthand string, value int, usage string) *int {
return CommandLine.IntP(name, shorthand, value, usage)
}

View file

@ -1,74 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- int32 Value
type int32Value int32
func newInt32Value(val int32, p *int32) *int32Value {
*p = val
return (*int32Value)(p)
}
func (i *int32Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 32)
*i = int32Value(v)
return err
}
func (i *int32Value) Type() string {
return "int32"
}
func (i *int32Value) String() string { return fmt.Sprintf("%v", *i) }
// Int32Var defines an int32 flag with specified name, default value, and usage string.
// The argument p points to an int32 variable in which to store the value of the flag.
func (f *FlagSet) Int32Var(p *int32, name string, value int32, usage string) {
f.VarP(newInt32Value(value, p), name, "", usage)
}
// Like Int32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32VarP(p *int32, name, shorthand string, value int32, usage string) {
f.VarP(newInt32Value(value, p), name, shorthand, usage)
}
// Int32Var defines an int32 flag with specified name, default value, and usage string.
// The argument p points to an int32 variable in which to store the value of the flag.
func Int32Var(p *int32, name string, value int32, usage string) {
CommandLine.VarP(newInt32Value(value, p), name, "", usage)
}
// Like Int32Var, but accepts a shorthand letter that can be used after a single dash.
func Int32VarP(p *int32, name, shorthand string, value int32, usage string) {
CommandLine.VarP(newInt32Value(value, p), name, shorthand, usage)
}
// Int32 defines an int32 flag with specified name, default value, and usage string.
// The return value is the address of an int32 variable that stores the value of the flag.
func (f *FlagSet) Int32(name string, value int32, usage string) *int32 {
p := new(int32)
f.Int32VarP(p, name, "", value, usage)
return p
}
// Like Int32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32P(name, shorthand string, value int32, usage string) *int32 {
p := new(int32)
f.Int32VarP(p, name, shorthand, value, usage)
return p
}
// Int32 defines an int32 flag with specified name, default value, and usage string.
// The return value is the address of an int32 variable that stores the value of the flag.
func Int32(name string, value int32, usage string) *int32 {
return CommandLine.Int32P(name, "", value, usage)
}
// Like Int32, but accepts a shorthand letter that can be used after a single dash.
func Int32P(name, shorthand string, value int32, usage string) *int32 {
return CommandLine.Int32P(name, shorthand, value, usage)
}

View file

@ -1,74 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- int64 Value
type int64Value int64
func newInt64Value(val int64, p *int64) *int64Value {
*p = val
return (*int64Value)(p)
}
func (i *int64Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
*i = int64Value(v)
return err
}
func (i *int64Value) Type() string {
return "int64"
}
func (i *int64Value) String() string { return fmt.Sprintf("%v", *i) }
// Int64Var defines an int64 flag with specified name, default value, and usage string.
// The argument p points to an int64 variable in which to store the value of the flag.
func (f *FlagSet) Int64Var(p *int64, name string, value int64, usage string) {
f.VarP(newInt64Value(value, p), name, "", usage)
}
// Like Int64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64VarP(p *int64, name, shorthand string, value int64, usage string) {
f.VarP(newInt64Value(value, p), name, shorthand, usage)
}
// Int64Var defines an int64 flag with specified name, default value, and usage string.
// The argument p points to an int64 variable in which to store the value of the flag.
func Int64Var(p *int64, name string, value int64, usage string) {
CommandLine.VarP(newInt64Value(value, p), name, "", usage)
}
// Like Int64Var, but accepts a shorthand letter that can be used after a single dash.
func Int64VarP(p *int64, name, shorthand string, value int64, usage string) {
CommandLine.VarP(newInt64Value(value, p), name, shorthand, usage)
}
// Int64 defines an int64 flag with specified name, default value, and usage string.
// The return value is the address of an int64 variable that stores the value of the flag.
func (f *FlagSet) Int64(name string, value int64, usage string) *int64 {
p := new(int64)
f.Int64VarP(p, name, "", value, usage)
return p
}
// Like Int64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64P(name, shorthand string, value int64, usage string) *int64 {
p := new(int64)
f.Int64VarP(p, name, shorthand, value, usage)
return p
}
// Int64 defines an int64 flag with specified name, default value, and usage string.
// The return value is the address of an int64 variable that stores the value of the flag.
func Int64(name string, value int64, usage string) *int64 {
return CommandLine.Int64P(name, "", value, usage)
}
// Like Int64, but accepts a shorthand letter that can be used after a single dash.
func Int64P(name, shorthand string, value int64, usage string) *int64 {
return CommandLine.Int64P(name, shorthand, value, usage)
}

View file

@ -1,74 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- int8 Value
type int8Value int8
func newInt8Value(val int8, p *int8) *int8Value {
*p = val
return (*int8Value)(p)
}
func (i *int8Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 8)
*i = int8Value(v)
return err
}
func (i *int8Value) Type() string {
return "int8"
}
func (i *int8Value) String() string { return fmt.Sprintf("%v", *i) }
// Int8Var defines an int8 flag with specified name, default value, and usage string.
// The argument p points to an int8 variable in which to store the value of the flag.
func (f *FlagSet) Int8Var(p *int8, name string, value int8, usage string) {
f.VarP(newInt8Value(value, p), name, "", usage)
}
// Like Int8Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int8VarP(p *int8, name, shorthand string, value int8, usage string) {
f.VarP(newInt8Value(value, p), name, shorthand, usage)
}
// Int8Var defines an int8 flag with specified name, default value, and usage string.
// The argument p points to an int8 variable in which to store the value of the flag.
func Int8Var(p *int8, name string, value int8, usage string) {
CommandLine.VarP(newInt8Value(value, p), name, "", usage)
}
// Like Int8Var, but accepts a shorthand letter that can be used after a single dash.
func Int8VarP(p *int8, name, shorthand string, value int8, usage string) {
CommandLine.VarP(newInt8Value(value, p), name, shorthand, usage)
}
// Int8 defines an int8 flag with specified name, default value, and usage string.
// The return value is the address of an int8 variable that stores the value of the flag.
func (f *FlagSet) Int8(name string, value int8, usage string) *int8 {
p := new(int8)
f.Int8VarP(p, name, "", value, usage)
return p
}
// Like Int8, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int8P(name, shorthand string, value int8, usage string) *int8 {
p := new(int8)
f.Int8VarP(p, name, shorthand, value, usage)
return p
}
// Int8 defines an int8 flag with specified name, default value, and usage string.
// The return value is the address of an int8 variable that stores the value of the flag.
func Int8(name string, value int8, usage string) *int8 {
return CommandLine.Int8P(name, "", value, usage)
}
// Like Int8, but accepts a shorthand letter that can be used after a single dash.
func Int8P(name, shorthand string, value int8, usage string) *int8 {
return CommandLine.Int8P(name, shorthand, value, usage)
}

View file

@ -1,76 +0,0 @@
package pflag
import (
"fmt"
"net"
)
// -- net.IP value
type ipValue net.IP
func newIPValue(val net.IP, p *net.IP) *ipValue {
*p = val
return (*ipValue)(p)
}
func (i *ipValue) String() string { return net.IP(*i).String() }
func (i *ipValue) Set(s string) error {
ip := net.ParseIP(s)
if ip == nil {
return fmt.Errorf("failed to parse IP: %q", s)
}
*i = ipValue(ip)
return nil
}
func (i *ipValue) Type() string {
return "ip"
}
// IPVar defines an net.IP flag with specified name, default value, and usage string.
// The argument p points to an net.IP variable in which to store the value of the flag.
func (f *FlagSet) IPVar(p *net.IP, name string, value net.IP, usage string) {
f.VarP(newIPValue(value, p), name, "", usage)
}
// Like IPVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPVarP(p *net.IP, name, shorthand string, value net.IP, usage string) {
f.VarP(newIPValue(value, p), name, shorthand, usage)
}
// IPVar defines an net.IP flag with specified name, default value, and usage string.
// The argument p points to an net.IP variable in which to store the value of the flag.
func IPVar(p *net.IP, name string, value net.IP, usage string) {
CommandLine.VarP(newIPValue(value, p), name, "", usage)
}
// Like IPVar, but accepts a shorthand letter that can be used after a single dash.
func IPVarP(p *net.IP, name, shorthand string, value net.IP, usage string) {
CommandLine.VarP(newIPValue(value, p), name, shorthand, usage)
}
// IP defines an net.IP flag with specified name, default value, and usage string.
// The return value is the address of an net.IP variable that stores the value of the flag.
func (f *FlagSet) IP(name string, value net.IP, usage string) *net.IP {
p := new(net.IP)
f.IPVarP(p, name, "", value, usage)
return p
}
// Like IP, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPP(name, shorthand string, value net.IP, usage string) *net.IP {
p := new(net.IP)
f.IPVarP(p, name, shorthand, value, usage)
return p
}
// IP defines an net.IP flag with specified name, default value, and usage string.
// The return value is the address of an net.IP variable that stores the value of the flag.
func IP(name string, value net.IP, usage string) *net.IP {
return CommandLine.IPP(name, "", value, usage)
}
// Like IP, but accepts a shorthand letter that can be used after a single dash.
func IPP(name, shorthand string, value net.IP, usage string) *net.IP {
return CommandLine.IPP(name, shorthand, value, usage)
}

View file

@ -1,86 +0,0 @@
package pflag
import (
"fmt"
"net"
)
// -- net.IPMask value
type ipMaskValue net.IPMask
func newIPMaskValue(val net.IPMask, p *net.IPMask) *ipMaskValue {
*p = val
return (*ipMaskValue)(p)
}
func (i *ipMaskValue) String() string { return net.IPMask(*i).String() }
func (i *ipMaskValue) Set(s string) error {
ip := ParseIPv4Mask(s)
if ip == nil {
return fmt.Errorf("failed to parse IP mask: %q", s)
}
*i = ipMaskValue(ip)
return nil
}
func (i *ipMaskValue) Type() string {
return "ipMask"
}
// Parse IPv4 netmask written in IP form (e.g. 255.255.255.0).
// This function should really belong to the net package.
func ParseIPv4Mask(s string) net.IPMask {
mask := net.ParseIP(s)
if mask == nil {
return nil
}
return net.IPv4Mask(mask[12], mask[13], mask[14], mask[15])
}
// IPMaskVar defines an net.IPMask flag with specified name, default value, and usage string.
// The argument p points to an net.IPMask variable in which to store the value of the flag.
func (f *FlagSet) IPMaskVar(p *net.IPMask, name string, value net.IPMask, usage string) {
f.VarP(newIPMaskValue(value, p), name, "", usage)
}
// Like IPMaskVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPMaskVarP(p *net.IPMask, name, shorthand string, value net.IPMask, usage string) {
f.VarP(newIPMaskValue(value, p), name, shorthand, usage)
}
// IPMaskVar defines an net.IPMask flag with specified name, default value, and usage string.
// The argument p points to an net.IPMask variable in which to store the value of the flag.
func IPMaskVar(p *net.IPMask, name string, value net.IPMask, usage string) {
CommandLine.VarP(newIPMaskValue(value, p), name, "", usage)
}
// Like IPMaskVar, but accepts a shorthand letter that can be used after a single dash.
func IPMaskVarP(p *net.IPMask, name, shorthand string, value net.IPMask, usage string) {
CommandLine.VarP(newIPMaskValue(value, p), name, shorthand, usage)
}
// IPMask defines an net.IPMask flag with specified name, default value, and usage string.
// The return value is the address of an net.IPMask variable that stores the value of the flag.
func (f *FlagSet) IPMask(name string, value net.IPMask, usage string) *net.IPMask {
p := new(net.IPMask)
f.IPMaskVarP(p, name, "", value, usage)
return p
}
// Like IPMask, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPMaskP(name, shorthand string, value net.IPMask, usage string) *net.IPMask {
p := new(net.IPMask)
f.IPMaskVarP(p, name, shorthand, value, usage)
return p
}
// IPMask defines an net.IPMask flag with specified name, default value, and usage string.
// The return value is the address of an net.IPMask variable that stores the value of the flag.
func IPMask(name string, value net.IPMask, usage string) *net.IPMask {
return CommandLine.IPMaskP(name, "", value, usage)
}
// Like IP, but accepts a shorthand letter that can be used after a single dash.
func IPMaskP(name, shorthand string, value net.IPMask, usage string) *net.IPMask {
return CommandLine.IPMaskP(name, shorthand, value, usage)
}

View file

@ -1,69 +0,0 @@
package pflag
import "fmt"
// -- string Value
type stringValue string
func newStringValue(val string, p *string) *stringValue {
*p = val
return (*stringValue)(p)
}
func (s *stringValue) Set(val string) error {
*s = stringValue(val)
return nil
}
func (s *stringValue) Type() string {
return "string"
}
func (s *stringValue) String() string { return fmt.Sprintf("%s", *s) }
// StringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a string variable in which to store the value of the flag.
func (f *FlagSet) StringVar(p *string, name string, value string, usage string) {
f.VarP(newStringValue(value, p), name, "", usage)
}
// Like StringVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringVarP(p *string, name, shorthand string, value string, usage string) {
f.VarP(newStringValue(value, p), name, shorthand, usage)
}
// StringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a string variable in which to store the value of the flag.
func StringVar(p *string, name string, value string, usage string) {
CommandLine.VarP(newStringValue(value, p), name, "", usage)
}
// Like StringVar, but accepts a shorthand letter that can be used after a single dash.
func StringVarP(p *string, name, shorthand string, value string, usage string) {
CommandLine.VarP(newStringValue(value, p), name, shorthand, usage)
}
// String defines a string flag with specified name, default value, and usage string.
// The return value is the address of a string variable that stores the value of the flag.
func (f *FlagSet) String(name string, value string, usage string) *string {
p := new(string)
f.StringVarP(p, name, "", value, usage)
return p
}
// Like String, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringP(name, shorthand string, value string, usage string) *string {
p := new(string)
f.StringVarP(p, name, shorthand, value, usage)
return p
}
// String defines a string flag with specified name, default value, and usage string.
// The return value is the address of a string variable that stores the value of the flag.
func String(name string, value string, usage string) *string {
return CommandLine.StringP(name, "", value, usage)
}
// Like String, but accepts a shorthand letter that can be used after a single dash.
func StringP(name, shorthand string, value string, usage string) *string {
return CommandLine.StringP(name, shorthand, value, usage)
}

View file

@ -1,74 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint Value
type uintValue uint
func newUintValue(val uint, p *uint) *uintValue {
*p = val
return (*uintValue)(p)
}
func (i *uintValue) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 64)
*i = uintValue(v)
return err
}
func (i *uintValue) Type() string {
return "uint"
}
func (i *uintValue) String() string { return fmt.Sprintf("%v", *i) }
// UintVar defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func (f *FlagSet) UintVar(p *uint, name string, value uint, usage string) {
f.VarP(newUintValue(value, p), name, "", usage)
}
// Like UintVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintVarP(p *uint, name, shorthand string, value uint, usage string) {
f.VarP(newUintValue(value, p), name, shorthand, usage)
}
// UintVar defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func UintVar(p *uint, name string, value uint, usage string) {
CommandLine.VarP(newUintValue(value, p), name, "", usage)
}
// Like UintVar, but accepts a shorthand letter that can be used after a single dash.
func UintVarP(p *uint, name, shorthand string, value uint, usage string) {
CommandLine.VarP(newUintValue(value, p), name, shorthand, usage)
}
// Uint defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func (f *FlagSet) Uint(name string, value uint, usage string) *uint {
p := new(uint)
f.UintVarP(p, name, "", value, usage)
return p
}
// Like Uint, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintP(name, shorthand string, value uint, usage string) *uint {
p := new(uint)
f.UintVarP(p, name, shorthand, value, usage)
return p
}
// Uint defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func Uint(name string, value uint, usage string) *uint {
return CommandLine.UintP(name, "", value, usage)
}
// Like Uint, but accepts a shorthand letter that can be used after a single dash.
func UintP(name, shorthand string, value uint, usage string) *uint {
return CommandLine.UintP(name, shorthand, value, usage)
}

View file

@ -1,72 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint16 value
type uint16Value uint16
func newUint16Value(val uint16, p *uint16) *uint16Value {
*p = val
return (*uint16Value)(p)
}
func (i *uint16Value) String() string { return fmt.Sprintf("%d", *i) }
func (i *uint16Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 16)
*i = uint16Value(v)
return err
}
func (i *uint16Value) Type() string {
return "uint16"
}
// Uint16Var defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func (f *FlagSet) Uint16Var(p *uint16, name string, value uint16, usage string) {
f.VarP(newUint16Value(value, p), name, "", usage)
}
// Like Uint16Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint16VarP(p *uint16, name, shorthand string, value uint16, usage string) {
f.VarP(newUint16Value(value, p), name, shorthand, usage)
}
// Uint16Var defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func Uint16Var(p *uint16, name string, value uint16, usage string) {
CommandLine.VarP(newUint16Value(value, p), name, "", usage)
}
// Like Uint16Var, but accepts a shorthand letter that can be used after a single dash.
func Uint16VarP(p *uint16, name, shorthand string, value uint16, usage string) {
CommandLine.VarP(newUint16Value(value, p), name, shorthand, usage)
}
// Uint16 defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func (f *FlagSet) Uint16(name string, value uint16, usage string) *uint16 {
p := new(uint16)
f.Uint16VarP(p, name, "", value, usage)
return p
}
// Like Uint16, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint16P(name, shorthand string, value uint16, usage string) *uint16 {
p := new(uint16)
f.Uint16VarP(p, name, shorthand, value, usage)
return p
}
// Uint16 defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func Uint16(name string, value uint16, usage string) *uint16 {
return CommandLine.Uint16P(name, "", value, usage)
}
// Like Uint16, but accepts a shorthand letter that can be used after a single dash.
func Uint16P(name, shorthand string, value uint16, usage string) *uint16 {
return CommandLine.Uint16P(name, shorthand, value, usage)
}

View file

@ -1,72 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint16 value
type uint32Value uint32
func newUint32Value(val uint32, p *uint32) *uint32Value {
*p = val
return (*uint32Value)(p)
}
func (i *uint32Value) String() string { return fmt.Sprintf("%d", *i) }
func (i *uint32Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 32)
*i = uint32Value(v)
return err
}
func (i *uint32Value) Type() string {
return "uint32"
}
// Uint32Var defines a uint32 flag with specified name, default value, and usage string.
// The argument p points to a uint32 variable in which to store the value of the flag.
func (f *FlagSet) Uint32Var(p *uint32, name string, value uint32, usage string) {
f.VarP(newUint32Value(value, p), name, "", usage)
}
// Like Uint32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint32VarP(p *uint32, name, shorthand string, value uint32, usage string) {
f.VarP(newUint32Value(value, p), name, shorthand, usage)
}
// Uint32Var defines a uint32 flag with specified name, default value, and usage string.
// The argument p points to a uint32 variable in which to store the value of the flag.
func Uint32Var(p *uint32, name string, value uint32, usage string) {
CommandLine.VarP(newUint32Value(value, p), name, "", usage)
}
// Like Uint32Var, but accepts a shorthand letter that can be used after a single dash.
func Uint32VarP(p *uint32, name, shorthand string, value uint32, usage string) {
CommandLine.VarP(newUint32Value(value, p), name, shorthand, usage)
}
// Uint32 defines a uint32 flag with specified name, default value, and usage string.
// The return value is the address of a uint32 variable that stores the value of the flag.
func (f *FlagSet) Uint32(name string, value uint32, usage string) *uint32 {
p := new(uint32)
f.Uint32VarP(p, name, "", value, usage)
return p
}
// Like Uint32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint32P(name, shorthand string, value uint32, usage string) *uint32 {
p := new(uint32)
f.Uint32VarP(p, name, shorthand, value, usage)
return p
}
// Uint32 defines a uint32 flag with specified name, default value, and usage string.
// The return value is the address of a uint32 variable that stores the value of the flag.
func Uint32(name string, value uint32, usage string) *uint32 {
return CommandLine.Uint32P(name, "", value, usage)
}
// Like Uint32, but accepts a shorthand letter that can be used after a single dash.
func Uint32P(name, shorthand string, value uint32, usage string) *uint32 {
return CommandLine.Uint32P(name, shorthand, value, usage)
}

View file

@ -1,74 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint64 Value
type uint64Value uint64
func newUint64Value(val uint64, p *uint64) *uint64Value {
*p = val
return (*uint64Value)(p)
}
func (i *uint64Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 64)
*i = uint64Value(v)
return err
}
func (i *uint64Value) Type() string {
return "uint64"
}
func (i *uint64Value) String() string { return fmt.Sprintf("%v", *i) }
// Uint64Var defines a uint64 flag with specified name, default value, and usage string.
// The argument p points to a uint64 variable in which to store the value of the flag.
func (f *FlagSet) Uint64Var(p *uint64, name string, value uint64, usage string) {
f.VarP(newUint64Value(value, p), name, "", usage)
}
// Like Uint64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint64VarP(p *uint64, name, shorthand string, value uint64, usage string) {
f.VarP(newUint64Value(value, p), name, shorthand, usage)
}
// Uint64Var defines a uint64 flag with specified name, default value, and usage string.
// The argument p points to a uint64 variable in which to store the value of the flag.
func Uint64Var(p *uint64, name string, value uint64, usage string) {
CommandLine.VarP(newUint64Value(value, p), name, "", usage)
}
// Like Uint64Var, but accepts a shorthand letter that can be used after a single dash.
func Uint64VarP(p *uint64, name, shorthand string, value uint64, usage string) {
CommandLine.VarP(newUint64Value(value, p), name, shorthand, usage)
}
// Uint64 defines a uint64 flag with specified name, default value, and usage string.
// The return value is the address of a uint64 variable that stores the value of the flag.
func (f *FlagSet) Uint64(name string, value uint64, usage string) *uint64 {
p := new(uint64)
f.Uint64VarP(p, name, "", value, usage)
return p
}
// Like Uint64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint64P(name, shorthand string, value uint64, usage string) *uint64 {
p := new(uint64)
f.Uint64VarP(p, name, shorthand, value, usage)
return p
}
// Uint64 defines a uint64 flag with specified name, default value, and usage string.
// The return value is the address of a uint64 variable that stores the value of the flag.
func Uint64(name string, value uint64, usage string) *uint64 {
return CommandLine.Uint64P(name, "", value, usage)
}
// Like Uint64, but accepts a shorthand letter that can be used after a single dash.
func Uint64P(name, shorthand string, value uint64, usage string) *uint64 {
return CommandLine.Uint64P(name, shorthand, value, usage)
}

View file

@ -1,74 +0,0 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint8 Value
type uint8Value uint8
func newUint8Value(val uint8, p *uint8) *uint8Value {
*p = val
return (*uint8Value)(p)
}
func (i *uint8Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 8)
*i = uint8Value(v)
return err
}
func (i *uint8Value) Type() string {
return "uint8"
}
func (i *uint8Value) String() string { return fmt.Sprintf("%v", *i) }
// Uint8Var defines a uint8 flag with specified name, default value, and usage string.
// The argument p points to a uint8 variable in which to store the value of the flag.
func (f *FlagSet) Uint8Var(p *uint8, name string, value uint8, usage string) {
f.VarP(newUint8Value(value, p), name, "", usage)
}
// Like Uint8Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint8VarP(p *uint8, name, shorthand string, value uint8, usage string) {
f.VarP(newUint8Value(value, p), name, shorthand, usage)
}
// Uint8Var defines a uint8 flag with specified name, default value, and usage string.
// The argument p points to a uint8 variable in which to store the value of the flag.
func Uint8Var(p *uint8, name string, value uint8, usage string) {
CommandLine.VarP(newUint8Value(value, p), name, "", usage)
}
// Like Uint8Var, but accepts a shorthand letter that can be used after a single dash.
func Uint8VarP(p *uint8, name, shorthand string, value uint8, usage string) {
CommandLine.VarP(newUint8Value(value, p), name, shorthand, usage)
}
// Uint8 defines a uint8 flag with specified name, default value, and usage string.
// The return value is the address of a uint8 variable that stores the value of the flag.
func (f *FlagSet) Uint8(name string, value uint8, usage string) *uint8 {
p := new(uint8)
f.Uint8VarP(p, name, "", value, usage)
return p
}
// Like Uint8, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint8P(name, shorthand string, value uint8, usage string) *uint8 {
p := new(uint8)
f.Uint8VarP(p, name, shorthand, value, usage)
return p
}
// Uint8 defines a uint8 flag with specified name, default value, and usage string.
// The return value is the address of a uint8 variable that stores the value of the flag.
func Uint8(name string, value uint8, usage string) *uint8 {
return CommandLine.Uint8P(name, "", value, usage)
}
// Like Uint8, but accepts a shorthand letter that can be used after a single dash.
func Uint8P(name, shorthand string, value uint8, usage string) *uint8 {
return CommandLine.Uint8P(name, shorthand, value, usage)
}

View file

@ -1,27 +0,0 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View file

@ -1,22 +0,0 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View file

@ -1,447 +0,0 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package context defines the Context type, which carries deadlines,
// cancelation signals, and other request-scoped values across API boundaries
// and between processes.
//
// Incoming requests to a server should create a Context, and outgoing calls to
// servers should accept a Context. The chain of function calls between must
// propagate the Context, optionally replacing it with a modified copy created
// using WithDeadline, WithTimeout, WithCancel, or WithValue.
//
// Programs that use Contexts should follow these rules to keep interfaces
// consistent across packages and enable static analysis tools to check context
// propagation:
//
// Do not store Contexts inside a struct type; instead, pass a Context
// explicitly to each function that needs it. The Context should be the first
// parameter, typically named ctx:
//
// func DoSomething(ctx context.Context, arg Arg) error {
// // ... use ctx ...
// }
//
// Do not pass a nil Context, even if a function permits it. Pass context.TODO
// if you are unsure about which Context to use.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
//
// The same Context may be passed to functions running in different goroutines;
// Contexts are safe for simultaneous use by multiple goroutines.
//
// See http://blog.golang.org/context for example code for a server that uses
// Contexts.
package context
import (
"errors"
"fmt"
"sync"
"time"
)
// A Context carries a deadline, a cancelation signal, and other values across
// API boundaries.
//
// Context's methods may be called by multiple goroutines simultaneously.
type Context interface {
// Deadline returns the time when work done on behalf of this context
// should be canceled. Deadline returns ok==false when no deadline is
// set. Successive calls to Deadline return the same results.
Deadline() (deadline time.Time, ok bool)
// Done returns a channel that's closed when work done on behalf of this
// context should be canceled. Done may return nil if this context can
// never be canceled. Successive calls to Done return the same value.
//
// WithCancel arranges for Done to be closed when cancel is called;
// WithDeadline arranges for Done to be closed when the deadline
// expires; WithTimeout arranges for Done to be closed when the timeout
// elapses.
//
// Done is provided for use in select statements:
//
// // Stream generates values with DoSomething and sends them to out
// // until DoSomething returns an error or ctx.Done is closed.
// func Stream(ctx context.Context, out <-chan Value) error {
// for {
// v, err := DoSomething(ctx)
// if err != nil {
// return err
// }
// select {
// case <-ctx.Done():
// return ctx.Err()
// case out <- v:
// }
// }
// }
//
// See http://blog.golang.org/pipelines for more examples of how to use
// a Done channel for cancelation.
Done() <-chan struct{}
// Err returns a non-nil error value after Done is closed. Err returns
// Canceled if the context was canceled or DeadlineExceeded if the
// context's deadline passed. No other values for Err are defined.
// After Done is closed, successive calls to Err return the same value.
Err() error
// Value returns the value associated with this context for key, or nil
// if no value is associated with key. Successive calls to Value with
// the same key returns the same result.
//
// Use context values only for request-scoped data that transits
// processes and API boundaries, not for passing optional parameters to
// functions.
//
// A key identifies a specific value in a Context. Functions that wish
// to store values in Context typically allocate a key in a global
// variable then use that key as the argument to context.WithValue and
// Context.Value. A key can be any type that supports equality;
// packages should define keys as an unexported type to avoid
// collisions.
//
// Packages that define a Context key should provide type-safe accessors
// for the values stores using that key:
//
// // Package user defines a User type that's stored in Contexts.
// package user
//
// import "golang.org/x/net/context"
//
// // User is the type of value stored in the Contexts.
// type User struct {...}
//
// // key is an unexported type for keys defined in this package.
// // This prevents collisions with keys defined in other packages.
// type key int
//
// // userKey is the key for user.User values in Contexts. It is
// // unexported; clients use user.NewContext and user.FromContext
// // instead of using this key directly.
// var userKey key = 0
//
// // NewContext returns a new Context that carries value u.
// func NewContext(ctx context.Context, u *User) context.Context {
// return context.WithValue(ctx, userKey, u)
// }
//
// // FromContext returns the User value stored in ctx, if any.
// func FromContext(ctx context.Context) (*User, bool) {
// u, ok := ctx.Value(userKey).(*User)
// return u, ok
// }
Value(key interface{}) interface{}
}
// Canceled is the error returned by Context.Err when the context is canceled.
var Canceled = errors.New("context canceled")
// DeadlineExceeded is the error returned by Context.Err when the context's
// deadline passes.
var DeadlineExceeded = errors.New("context deadline exceeded")
// An emptyCtx is never canceled, has no values, and has no deadline. It is not
// struct{}, since vars of this type must have distinct addresses.
type emptyCtx int
func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
return
}
func (*emptyCtx) Done() <-chan struct{} {
return nil
}
func (*emptyCtx) Err() error {
return nil
}
func (*emptyCtx) Value(key interface{}) interface{} {
return nil
}
func (e *emptyCtx) String() string {
switch e {
case background:
return "context.Background"
case todo:
return "context.TODO"
}
return "unknown empty Context"
}
var (
background = new(emptyCtx)
todo = new(emptyCtx)
)
// Background returns a non-nil, empty Context. It is never canceled, has no
// values, and has no deadline. It is typically used by the main function,
// initialization, and tests, and as the top-level Context for incoming
// requests.
func Background() Context {
return background
}
// TODO returns a non-nil, empty Context. Code should use context.TODO when
// it's unclear which Context to use or it is not yet available (because the
// surrounding function has not yet been extended to accept a Context
// parameter). TODO is recognized by static analysis tools that determine
// whether Contexts are propagated correctly in a program.
func TODO() Context {
return todo
}
// A CancelFunc tells an operation to abandon its work.
// A CancelFunc does not wait for the work to stop.
// After the first call, subsequent calls to a CancelFunc do nothing.
type CancelFunc func()
// WithCancel returns a copy of parent with a new Done channel. The returned
// context's Done channel is closed when the returned cancel function is called
// or when the parent context's Done channel is closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithCancel(parent Context) (ctx Context, cancel CancelFunc) {
c := newCancelCtx(parent)
propagateCancel(parent, c)
return c, func() { c.cancel(true, Canceled) }
}
// newCancelCtx returns an initialized cancelCtx.
func newCancelCtx(parent Context) *cancelCtx {
return &cancelCtx{
Context: parent,
done: make(chan struct{}),
}
}
// propagateCancel arranges for child to be canceled when parent is.
func propagateCancel(parent Context, child canceler) {
if parent.Done() == nil {
return // parent is never canceled
}
if p, ok := parentCancelCtx(parent); ok {
p.mu.Lock()
if p.err != nil {
// parent has already been canceled
child.cancel(false, p.err)
} else {
if p.children == nil {
p.children = make(map[canceler]bool)
}
p.children[child] = true
}
p.mu.Unlock()
} else {
go func() {
select {
case <-parent.Done():
child.cancel(false, parent.Err())
case <-child.Done():
}
}()
}
}
// parentCancelCtx follows a chain of parent references until it finds a
// *cancelCtx. This function understands how each of the concrete types in this
// package represents its parent.
func parentCancelCtx(parent Context) (*cancelCtx, bool) {
for {
switch c := parent.(type) {
case *cancelCtx:
return c, true
case *timerCtx:
return c.cancelCtx, true
case *valueCtx:
parent = c.Context
default:
return nil, false
}
}
}
// removeChild removes a context from its parent.
func removeChild(parent Context, child canceler) {
p, ok := parentCancelCtx(parent)
if !ok {
return
}
p.mu.Lock()
if p.children != nil {
delete(p.children, child)
}
p.mu.Unlock()
}
// A canceler is a context type that can be canceled directly. The
// implementations are *cancelCtx and *timerCtx.
type canceler interface {
cancel(removeFromParent bool, err error)
Done() <-chan struct{}
}
// A cancelCtx can be canceled. When canceled, it also cancels any children
// that implement canceler.
type cancelCtx struct {
Context
done chan struct{} // closed by the first cancel call.
mu sync.Mutex
children map[canceler]bool // set to nil by the first cancel call
err error // set to non-nil by the first cancel call
}
func (c *cancelCtx) Done() <-chan struct{} {
return c.done
}
func (c *cancelCtx) Err() error {
c.mu.Lock()
defer c.mu.Unlock()
return c.err
}
func (c *cancelCtx) String() string {
return fmt.Sprintf("%v.WithCancel", c.Context)
}
// cancel closes c.done, cancels each of c's children, and, if
// removeFromParent is true, removes c from its parent's children.
func (c *cancelCtx) cancel(removeFromParent bool, err error) {
if err == nil {
panic("context: internal error: missing cancel error")
}
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return // already canceled
}
c.err = err
close(c.done)
for child := range c.children {
// NOTE: acquiring the child's lock while holding parent's lock.
child.cancel(false, err)
}
c.children = nil
c.mu.Unlock()
if removeFromParent {
removeChild(c.Context, c)
}
}
// WithDeadline returns a copy of the parent context with the deadline adjusted
// to be no later than d. If the parent's deadline is already earlier than d,
// WithDeadline(parent, d) is semantically equivalent to parent. The returned
// context's Done channel is closed when the deadline expires, when the returned
// cancel function is called, or when the parent context's Done channel is
// closed, whichever happens first.
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete.
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc) {
if cur, ok := parent.Deadline(); ok && cur.Before(deadline) {
// The current deadline is already sooner than the new one.
return WithCancel(parent)
}
c := &timerCtx{
cancelCtx: newCancelCtx(parent),
deadline: deadline,
}
propagateCancel(parent, c)
d := deadline.Sub(time.Now())
if d <= 0 {
c.cancel(true, DeadlineExceeded) // deadline has already passed
return c, func() { c.cancel(true, Canceled) }
}
c.mu.Lock()
defer c.mu.Unlock()
if c.err == nil {
c.timer = time.AfterFunc(d, func() {
c.cancel(true, DeadlineExceeded)
})
}
return c, func() { c.cancel(true, Canceled) }
}
// A timerCtx carries a timer and a deadline. It embeds a cancelCtx to
// implement Done and Err. It implements cancel by stopping its timer then
// delegating to cancelCtx.cancel.
type timerCtx struct {
*cancelCtx
timer *time.Timer // Under cancelCtx.mu.
deadline time.Time
}
func (c *timerCtx) Deadline() (deadline time.Time, ok bool) {
return c.deadline, true
}
func (c *timerCtx) String() string {
return fmt.Sprintf("%v.WithDeadline(%s [%s])", c.cancelCtx.Context, c.deadline, c.deadline.Sub(time.Now()))
}
func (c *timerCtx) cancel(removeFromParent bool, err error) {
c.cancelCtx.cancel(false, err)
if removeFromParent {
// Remove this timerCtx from its parent cancelCtx's children.
removeChild(c.cancelCtx.Context, c)
}
c.mu.Lock()
if c.timer != nil {
c.timer.Stop()
c.timer = nil
}
c.mu.Unlock()
}
// WithTimeout returns WithDeadline(parent, time.Now().Add(timeout)).
//
// Canceling this context releases resources associated with it, so code should
// call cancel as soon as the operations running in this Context complete:
//
// func slowOperationWithTimeout(ctx context.Context) (Result, error) {
// ctx, cancel := context.WithTimeout(ctx, 100*time.Millisecond)
// defer cancel() // releases resources if slowOperation completes before timeout elapses
// return slowOperation(ctx)
// }
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc) {
return WithDeadline(parent, time.Now().Add(timeout))
}
// WithValue returns a copy of parent in which the value associated with key is
// val.
//
// Use context Values only for request-scoped data that transits processes and
// APIs, not for passing optional parameters to functions.
func WithValue(parent Context, key interface{}, val interface{}) Context {
return &valueCtx{parent, key, val}
}
// A valueCtx carries a key-value pair. It implements Value for that key and
// delegates all other calls to the embedded Context.
type valueCtx struct {
Context
key, val interface{}
}
func (c *valueCtx) String() string {
return fmt.Sprintf("%v.WithValue(%#v, %#v)", c.Context, c.key, c.val)
}
func (c *valueCtx) Value(key interface{}) interface{} {
if c.key == key {
return c.val
}
return c.Context.Value(key)
}