Add InfluxDB support for traefik metrics

This commit is contained in:
Aditya C S 2017-11-08 19:44:03 +05:30 committed by Traefiker
parent e3131481e9
commit 00d7c5972f
35 changed files with 4693 additions and 28 deletions

19
vendor/github.com/VividCortex/gohistogram/LICENSE generated vendored Normal file
View file

@ -0,0 +1,19 @@
Copyright (c) 2013 VividCortex
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

23
vendor/github.com/VividCortex/gohistogram/histogram.go generated vendored Normal file
View file

@ -0,0 +1,23 @@
package gohistogram
// Copyright (c) 2013 VividCortex, Inc. All rights reserved.
// Please see the LICENSE file for applicable license terms.
// Histogram is the interface that wraps the Add and Quantile methods.
type Histogram interface {
// Add adds a new value, n, to the histogram. Trimming is done
// automatically.
Add(n float64)
// Quantile returns an approximation.
Quantile(n float64) (q float64)
// String returns a string reprentation of the histogram,
// which is useful for printing to a terminal.
String() (str string)
}
type bin struct {
value float64
count float64
}

View file

@ -0,0 +1,160 @@
package gohistogram
// Copyright (c) 2013 VividCortex, Inc. All rights reserved.
// Please see the LICENSE file for applicable license terms.
import (
"fmt"
)
type NumericHistogram struct {
bins []bin
maxbins int
total uint64
}
// NewHistogram returns a new NumericHistogram with a maximum of n bins.
//
// There is no "optimal" bin count, but somewhere between 20 and 80 bins
// should be sufficient.
func NewHistogram(n int) *NumericHistogram {
return &NumericHistogram{
bins: make([]bin, 0),
maxbins: n,
total: 0,
}
}
func (h *NumericHistogram) Add(n float64) {
defer h.trim()
h.total++
for i := range h.bins {
if h.bins[i].value == n {
h.bins[i].count++
return
}
if h.bins[i].value > n {
newbin := bin{value: n, count: 1}
head := append(make([]bin, 0), h.bins[0:i]...)
head = append(head, newbin)
tail := h.bins[i:]
h.bins = append(head, tail...)
return
}
}
h.bins = append(h.bins, bin{count: 1, value: n})
}
func (h *NumericHistogram) Quantile(q float64) float64 {
count := q * float64(h.total)
for i := range h.bins {
count -= float64(h.bins[i].count)
if count <= 0 {
return h.bins[i].value
}
}
return -1
}
// CDF returns the value of the cumulative distribution function
// at x
func (h *NumericHistogram) CDF(x float64) float64 {
count := 0.0
for i := range h.bins {
if h.bins[i].value <= x {
count += float64(h.bins[i].count)
}
}
return count / float64(h.total)
}
// Mean returns the sample mean of the distribution
func (h *NumericHistogram) Mean() float64 {
if h.total == 0 {
return 0
}
sum := 0.0
for i := range h.bins {
sum += h.bins[i].value * h.bins[i].count
}
return sum / float64(h.total)
}
// Variance returns the variance of the distribution
func (h *NumericHistogram) Variance() float64 {
if h.total == 0 {
return 0
}
sum := 0.0
mean := h.Mean()
for i := range h.bins {
sum += (h.bins[i].count * (h.bins[i].value - mean) * (h.bins[i].value - mean))
}
return sum / float64(h.total)
}
func (h *NumericHistogram) Count() float64 {
return float64(h.total)
}
// trim merges adjacent bins to decrease the bin count to the maximum value
func (h *NumericHistogram) trim() {
for len(h.bins) > h.maxbins {
// Find closest bins in terms of value
minDelta := 1e99
minDeltaIndex := 0
for i := range h.bins {
if i == 0 {
continue
}
if delta := h.bins[i].value - h.bins[i-1].value; delta < minDelta {
minDelta = delta
minDeltaIndex = i
}
}
// We need to merge bins minDeltaIndex-1 and minDeltaIndex
totalCount := h.bins[minDeltaIndex-1].count + h.bins[minDeltaIndex].count
mergedbin := bin{
value: (h.bins[minDeltaIndex-1].value*
h.bins[minDeltaIndex-1].count +
h.bins[minDeltaIndex].value*
h.bins[minDeltaIndex].count) /
totalCount, // weighted average
count: totalCount, // summed heights
}
head := append(make([]bin, 0), h.bins[0:minDeltaIndex-1]...)
tail := append([]bin{mergedbin}, h.bins[minDeltaIndex+1:]...)
h.bins = append(head, tail...)
}
}
// String returns a string reprentation of the histogram,
// which is useful for printing to a terminal.
func (h *NumericHistogram) String() (str string) {
str += fmt.Sprintln("Total:", h.total)
for i := range h.bins {
var bar string
for j := 0; j < int(float64(h.bins[i].count)/float64(h.total)*200); j++ {
bar += "."
}
str += fmt.Sprintln(h.bins[i].value, "\t", bar)
}
return
}

View file

@ -0,0 +1,190 @@
// Package gohistogram contains implementations of weighted and exponential histograms.
package gohistogram
// Copyright (c) 2013 VividCortex, Inc. All rights reserved.
// Please see the LICENSE file for applicable license terms.
import "fmt"
// A WeightedHistogram implements Histogram. A WeightedHistogram has bins that have values
// which are exponentially weighted moving averages. This allows you keep inserting large
// amounts of data into the histogram and approximate quantiles with recency factored in.
type WeightedHistogram struct {
bins []bin
maxbins int
total float64
alpha float64
}
// NewWeightedHistogram returns a new WeightedHistogram with a maximum of n bins with a decay factor
// of alpha.
//
// There is no "optimal" bin count, but somewhere between 20 and 80 bins should be
// sufficient.
//
// Alpha should be set to 2 / (N+1), where N represents the average age of the moving window.
// For example, a 60-second window with an average age of 30 seconds would yield an
// alpha of 0.064516129.
func NewWeightedHistogram(n int, alpha float64) *WeightedHistogram {
return &WeightedHistogram{
bins: make([]bin, 0),
maxbins: n,
total: 0,
alpha: alpha,
}
}
func ewma(existingVal float64, newVal float64, alpha float64) (result float64) {
result = newVal*(1-alpha) + existingVal*alpha
return
}
func (h *WeightedHistogram) scaleDown(except int) {
for i := range h.bins {
if i != except {
h.bins[i].count = ewma(h.bins[i].count, 0, h.alpha)
}
}
}
func (h *WeightedHistogram) Add(n float64) {
defer h.trim()
for i := range h.bins {
if h.bins[i].value == n {
h.bins[i].count++
defer h.scaleDown(i)
return
}
if h.bins[i].value > n {
newbin := bin{value: n, count: 1}
head := append(make([]bin, 0), h.bins[0:i]...)
head = append(head, newbin)
tail := h.bins[i:]
h.bins = append(head, tail...)
defer h.scaleDown(i)
return
}
}
h.bins = append(h.bins, bin{count: 1, value: n})
}
func (h *WeightedHistogram) Quantile(q float64) float64 {
count := q * h.total
for i := range h.bins {
count -= float64(h.bins[i].count)
if count <= 0 {
return h.bins[i].value
}
}
return -1
}
// CDF returns the value of the cumulative distribution function
// at x
func (h *WeightedHistogram) CDF(x float64) float64 {
count := 0.0
for i := range h.bins {
if h.bins[i].value <= x {
count += float64(h.bins[i].count)
}
}
return count / h.total
}
// Mean returns the sample mean of the distribution
func (h *WeightedHistogram) Mean() float64 {
if h.total == 0 {
return 0
}
sum := 0.0
for i := range h.bins {
sum += h.bins[i].value * h.bins[i].count
}
return sum / h.total
}
// Variance returns the variance of the distribution
func (h *WeightedHistogram) Variance() float64 {
if h.total == 0 {
return 0
}
sum := 0.0
mean := h.Mean()
for i := range h.bins {
sum += (h.bins[i].count * (h.bins[i].value - mean) * (h.bins[i].value - mean))
}
return sum / h.total
}
func (h *WeightedHistogram) Count() float64 {
return h.total
}
func (h *WeightedHistogram) trim() {
total := 0.0
for i := range h.bins {
total += h.bins[i].count
}
h.total = total
for len(h.bins) > h.maxbins {
// Find closest bins in terms of value
minDelta := 1e99
minDeltaIndex := 0
for i := range h.bins {
if i == 0 {
continue
}
if delta := h.bins[i].value - h.bins[i-1].value; delta < minDelta {
minDelta = delta
minDeltaIndex = i
}
}
// We need to merge bins minDeltaIndex-1 and minDeltaIndex
totalCount := h.bins[minDeltaIndex-1].count + h.bins[minDeltaIndex].count
mergedbin := bin{
value: (h.bins[minDeltaIndex-1].value*
h.bins[minDeltaIndex-1].count +
h.bins[minDeltaIndex].value*
h.bins[minDeltaIndex].count) /
totalCount, // weighted average
count: totalCount, // summed heights
}
head := append(make([]bin, 0), h.bins[0:minDeltaIndex-1]...)
tail := append([]bin{mergedbin}, h.bins[minDeltaIndex+1:]...)
h.bins = append(head, tail...)
}
}
// String returns a string reprentation of the histogram,
// which is useful for printing to a terminal.
func (h *WeightedHistogram) String() (str string) {
str += fmt.Sprintln("Total:", h.total)
for i := range h.bins {
var bar string
for j := 0; j < int(float64(h.bins[i].count)/float64(h.total)*200); j++ {
bar += "."
}
str += fmt.Sprintln(h.bins[i].value, "\t", bar)
}
return
}