Add InfluxDB support for traefik metrics
This commit is contained in:
parent
e3131481e9
commit
00d7c5972f
35 changed files with 4693 additions and 28 deletions
19
vendor/github.com/VividCortex/gohistogram/LICENSE
generated
vendored
Normal file
19
vendor/github.com/VividCortex/gohistogram/LICENSE
generated
vendored
Normal file
|
@ -0,0 +1,19 @@
|
|||
Copyright (c) 2013 VividCortex
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
23
vendor/github.com/VividCortex/gohistogram/histogram.go
generated
vendored
Normal file
23
vendor/github.com/VividCortex/gohistogram/histogram.go
generated
vendored
Normal file
|
@ -0,0 +1,23 @@
|
|||
package gohistogram
|
||||
|
||||
// Copyright (c) 2013 VividCortex, Inc. All rights reserved.
|
||||
// Please see the LICENSE file for applicable license terms.
|
||||
|
||||
// Histogram is the interface that wraps the Add and Quantile methods.
|
||||
type Histogram interface {
|
||||
// Add adds a new value, n, to the histogram. Trimming is done
|
||||
// automatically.
|
||||
Add(n float64)
|
||||
|
||||
// Quantile returns an approximation.
|
||||
Quantile(n float64) (q float64)
|
||||
|
||||
// String returns a string reprentation of the histogram,
|
||||
// which is useful for printing to a terminal.
|
||||
String() (str string)
|
||||
}
|
||||
|
||||
type bin struct {
|
||||
value float64
|
||||
count float64
|
||||
}
|
160
vendor/github.com/VividCortex/gohistogram/numerichistogram.go
generated
vendored
Normal file
160
vendor/github.com/VividCortex/gohistogram/numerichistogram.go
generated
vendored
Normal file
|
@ -0,0 +1,160 @@
|
|||
package gohistogram
|
||||
|
||||
// Copyright (c) 2013 VividCortex, Inc. All rights reserved.
|
||||
// Please see the LICENSE file for applicable license terms.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
)
|
||||
|
||||
type NumericHistogram struct {
|
||||
bins []bin
|
||||
maxbins int
|
||||
total uint64
|
||||
}
|
||||
|
||||
// NewHistogram returns a new NumericHistogram with a maximum of n bins.
|
||||
//
|
||||
// There is no "optimal" bin count, but somewhere between 20 and 80 bins
|
||||
// should be sufficient.
|
||||
func NewHistogram(n int) *NumericHistogram {
|
||||
return &NumericHistogram{
|
||||
bins: make([]bin, 0),
|
||||
maxbins: n,
|
||||
total: 0,
|
||||
}
|
||||
}
|
||||
|
||||
func (h *NumericHistogram) Add(n float64) {
|
||||
defer h.trim()
|
||||
h.total++
|
||||
for i := range h.bins {
|
||||
if h.bins[i].value == n {
|
||||
h.bins[i].count++
|
||||
return
|
||||
}
|
||||
|
||||
if h.bins[i].value > n {
|
||||
|
||||
newbin := bin{value: n, count: 1}
|
||||
head := append(make([]bin, 0), h.bins[0:i]...)
|
||||
|
||||
head = append(head, newbin)
|
||||
tail := h.bins[i:]
|
||||
h.bins = append(head, tail...)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
h.bins = append(h.bins, bin{count: 1, value: n})
|
||||
}
|
||||
|
||||
func (h *NumericHistogram) Quantile(q float64) float64 {
|
||||
count := q * float64(h.total)
|
||||
for i := range h.bins {
|
||||
count -= float64(h.bins[i].count)
|
||||
|
||||
if count <= 0 {
|
||||
return h.bins[i].value
|
||||
}
|
||||
}
|
||||
|
||||
return -1
|
||||
}
|
||||
|
||||
// CDF returns the value of the cumulative distribution function
|
||||
// at x
|
||||
func (h *NumericHistogram) CDF(x float64) float64 {
|
||||
count := 0.0
|
||||
for i := range h.bins {
|
||||
if h.bins[i].value <= x {
|
||||
count += float64(h.bins[i].count)
|
||||
}
|
||||
}
|
||||
|
||||
return count / float64(h.total)
|
||||
}
|
||||
|
||||
// Mean returns the sample mean of the distribution
|
||||
func (h *NumericHistogram) Mean() float64 {
|
||||
if h.total == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
sum := 0.0
|
||||
|
||||
for i := range h.bins {
|
||||
sum += h.bins[i].value * h.bins[i].count
|
||||
}
|
||||
|
||||
return sum / float64(h.total)
|
||||
}
|
||||
|
||||
// Variance returns the variance of the distribution
|
||||
func (h *NumericHistogram) Variance() float64 {
|
||||
if h.total == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
sum := 0.0
|
||||
mean := h.Mean()
|
||||
|
||||
for i := range h.bins {
|
||||
sum += (h.bins[i].count * (h.bins[i].value - mean) * (h.bins[i].value - mean))
|
||||
}
|
||||
|
||||
return sum / float64(h.total)
|
||||
}
|
||||
|
||||
func (h *NumericHistogram) Count() float64 {
|
||||
return float64(h.total)
|
||||
}
|
||||
|
||||
// trim merges adjacent bins to decrease the bin count to the maximum value
|
||||
func (h *NumericHistogram) trim() {
|
||||
for len(h.bins) > h.maxbins {
|
||||
// Find closest bins in terms of value
|
||||
minDelta := 1e99
|
||||
minDeltaIndex := 0
|
||||
for i := range h.bins {
|
||||
if i == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
if delta := h.bins[i].value - h.bins[i-1].value; delta < minDelta {
|
||||
minDelta = delta
|
||||
minDeltaIndex = i
|
||||
}
|
||||
}
|
||||
|
||||
// We need to merge bins minDeltaIndex-1 and minDeltaIndex
|
||||
totalCount := h.bins[minDeltaIndex-1].count + h.bins[minDeltaIndex].count
|
||||
mergedbin := bin{
|
||||
value: (h.bins[minDeltaIndex-1].value*
|
||||
h.bins[minDeltaIndex-1].count +
|
||||
h.bins[minDeltaIndex].value*
|
||||
h.bins[minDeltaIndex].count) /
|
||||
totalCount, // weighted average
|
||||
count: totalCount, // summed heights
|
||||
}
|
||||
head := append(make([]bin, 0), h.bins[0:minDeltaIndex-1]...)
|
||||
tail := append([]bin{mergedbin}, h.bins[minDeltaIndex+1:]...)
|
||||
h.bins = append(head, tail...)
|
||||
}
|
||||
}
|
||||
|
||||
// String returns a string reprentation of the histogram,
|
||||
// which is useful for printing to a terminal.
|
||||
func (h *NumericHistogram) String() (str string) {
|
||||
str += fmt.Sprintln("Total:", h.total)
|
||||
|
||||
for i := range h.bins {
|
||||
var bar string
|
||||
for j := 0; j < int(float64(h.bins[i].count)/float64(h.total)*200); j++ {
|
||||
bar += "."
|
||||
}
|
||||
str += fmt.Sprintln(h.bins[i].value, "\t", bar)
|
||||
}
|
||||
|
||||
return
|
||||
}
|
190
vendor/github.com/VividCortex/gohistogram/weightedhistogram.go
generated
vendored
Normal file
190
vendor/github.com/VividCortex/gohistogram/weightedhistogram.go
generated
vendored
Normal file
|
@ -0,0 +1,190 @@
|
|||
// Package gohistogram contains implementations of weighted and exponential histograms.
|
||||
package gohistogram
|
||||
|
||||
// Copyright (c) 2013 VividCortex, Inc. All rights reserved.
|
||||
// Please see the LICENSE file for applicable license terms.
|
||||
|
||||
import "fmt"
|
||||
|
||||
// A WeightedHistogram implements Histogram. A WeightedHistogram has bins that have values
|
||||
// which are exponentially weighted moving averages. This allows you keep inserting large
|
||||
// amounts of data into the histogram and approximate quantiles with recency factored in.
|
||||
type WeightedHistogram struct {
|
||||
bins []bin
|
||||
maxbins int
|
||||
total float64
|
||||
alpha float64
|
||||
}
|
||||
|
||||
// NewWeightedHistogram returns a new WeightedHistogram with a maximum of n bins with a decay factor
|
||||
// of alpha.
|
||||
//
|
||||
// There is no "optimal" bin count, but somewhere between 20 and 80 bins should be
|
||||
// sufficient.
|
||||
//
|
||||
// Alpha should be set to 2 / (N+1), where N represents the average age of the moving window.
|
||||
// For example, a 60-second window with an average age of 30 seconds would yield an
|
||||
// alpha of 0.064516129.
|
||||
func NewWeightedHistogram(n int, alpha float64) *WeightedHistogram {
|
||||
return &WeightedHistogram{
|
||||
bins: make([]bin, 0),
|
||||
maxbins: n,
|
||||
total: 0,
|
||||
alpha: alpha,
|
||||
}
|
||||
}
|
||||
|
||||
func ewma(existingVal float64, newVal float64, alpha float64) (result float64) {
|
||||
result = newVal*(1-alpha) + existingVal*alpha
|
||||
return
|
||||
}
|
||||
|
||||
func (h *WeightedHistogram) scaleDown(except int) {
|
||||
for i := range h.bins {
|
||||
if i != except {
|
||||
h.bins[i].count = ewma(h.bins[i].count, 0, h.alpha)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (h *WeightedHistogram) Add(n float64) {
|
||||
defer h.trim()
|
||||
for i := range h.bins {
|
||||
if h.bins[i].value == n {
|
||||
h.bins[i].count++
|
||||
|
||||
defer h.scaleDown(i)
|
||||
return
|
||||
}
|
||||
|
||||
if h.bins[i].value > n {
|
||||
|
||||
newbin := bin{value: n, count: 1}
|
||||
head := append(make([]bin, 0), h.bins[0:i]...)
|
||||
|
||||
head = append(head, newbin)
|
||||
tail := h.bins[i:]
|
||||
h.bins = append(head, tail...)
|
||||
|
||||
defer h.scaleDown(i)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
h.bins = append(h.bins, bin{count: 1, value: n})
|
||||
}
|
||||
|
||||
func (h *WeightedHistogram) Quantile(q float64) float64 {
|
||||
count := q * h.total
|
||||
for i := range h.bins {
|
||||
count -= float64(h.bins[i].count)
|
||||
|
||||
if count <= 0 {
|
||||
return h.bins[i].value
|
||||
}
|
||||
}
|
||||
|
||||
return -1
|
||||
}
|
||||
|
||||
// CDF returns the value of the cumulative distribution function
|
||||
// at x
|
||||
func (h *WeightedHistogram) CDF(x float64) float64 {
|
||||
count := 0.0
|
||||
for i := range h.bins {
|
||||
if h.bins[i].value <= x {
|
||||
count += float64(h.bins[i].count)
|
||||
}
|
||||
}
|
||||
|
||||
return count / h.total
|
||||
}
|
||||
|
||||
// Mean returns the sample mean of the distribution
|
||||
func (h *WeightedHistogram) Mean() float64 {
|
||||
if h.total == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
sum := 0.0
|
||||
|
||||
for i := range h.bins {
|
||||
sum += h.bins[i].value * h.bins[i].count
|
||||
}
|
||||
|
||||
return sum / h.total
|
||||
}
|
||||
|
||||
// Variance returns the variance of the distribution
|
||||
func (h *WeightedHistogram) Variance() float64 {
|
||||
if h.total == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
sum := 0.0
|
||||
mean := h.Mean()
|
||||
|
||||
for i := range h.bins {
|
||||
sum += (h.bins[i].count * (h.bins[i].value - mean) * (h.bins[i].value - mean))
|
||||
}
|
||||
|
||||
return sum / h.total
|
||||
}
|
||||
|
||||
func (h *WeightedHistogram) Count() float64 {
|
||||
return h.total
|
||||
}
|
||||
|
||||
func (h *WeightedHistogram) trim() {
|
||||
total := 0.0
|
||||
for i := range h.bins {
|
||||
total += h.bins[i].count
|
||||
}
|
||||
h.total = total
|
||||
for len(h.bins) > h.maxbins {
|
||||
|
||||
// Find closest bins in terms of value
|
||||
minDelta := 1e99
|
||||
minDeltaIndex := 0
|
||||
for i := range h.bins {
|
||||
if i == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
if delta := h.bins[i].value - h.bins[i-1].value; delta < minDelta {
|
||||
minDelta = delta
|
||||
minDeltaIndex = i
|
||||
}
|
||||
}
|
||||
|
||||
// We need to merge bins minDeltaIndex-1 and minDeltaIndex
|
||||
totalCount := h.bins[minDeltaIndex-1].count + h.bins[minDeltaIndex].count
|
||||
mergedbin := bin{
|
||||
value: (h.bins[minDeltaIndex-1].value*
|
||||
h.bins[minDeltaIndex-1].count +
|
||||
h.bins[minDeltaIndex].value*
|
||||
h.bins[minDeltaIndex].count) /
|
||||
totalCount, // weighted average
|
||||
count: totalCount, // summed heights
|
||||
}
|
||||
head := append(make([]bin, 0), h.bins[0:minDeltaIndex-1]...)
|
||||
tail := append([]bin{mergedbin}, h.bins[minDeltaIndex+1:]...)
|
||||
h.bins = append(head, tail...)
|
||||
}
|
||||
}
|
||||
|
||||
// String returns a string reprentation of the histogram,
|
||||
// which is useful for printing to a terminal.
|
||||
func (h *WeightedHistogram) String() (str string) {
|
||||
str += fmt.Sprintln("Total:", h.total)
|
||||
|
||||
for i := range h.bins {
|
||||
var bar string
|
||||
for j := 0; j < int(float64(h.bins[i].count)/float64(h.total)*200); j++ {
|
||||
bar += "."
|
||||
}
|
||||
str += fmt.Sprintln(h.bins[i].value, "\t", bar)
|
||||
}
|
||||
|
||||
return
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue